Multi-Analyte Optical Sensor Chip based on Photo-Patternable Hybrid Sol-Gel Integrated Optics - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Multi-Analyte Optical Sensor Chip based on Photo-Patternable Hybrid Sol-Gel Integrated Optics

Description:

planar lightwave circuit technology (photo-patternable sol-gel waveguide structure) ... Standard Mask-Aligner. National Centre for Sensor Research. Ridge Waveguides ... – PowerPoint PPT presentation

Number of Views:180
Avg rating:3.0/5.0
Slides: 23
Provided by: seanofl
Category:

less

Transcript and Presenter's Notes

Title: Multi-Analyte Optical Sensor Chip based on Photo-Patternable Hybrid Sol-Gel Integrated Optics


1
Multi-Analyte Optical Sensor Chip based on
Photo-Patternable Hybrid Sol-Gel Integrated Optics
  • Jean-Marc Sabattié, Orla McGaughey, Aisling K.
    McEvoy, Jérôme Charmet,
  • Brian D. MacCraith

2
Outline
  • Introduction
  • Doped sol-gel materials
  • UV-patterned sol-gel waveguides
  • Sensing mechanisms
  • Deposition process
  • Results
  • Conclusions / Future work

3
Introduction
  • Development of a miniaturised multi-analyte
  • sensor chip
  • Design
  • novel configuration for efficient capture of
    fluorescence based on US Patent (US 6137117)
    MacCraith et al.
  • Integration of
  • planar lightwave circuit technology
    (photo-patternable sol-gel waveguide structure).
  • Sol-gel sensor technology
  • Detection of O2 and CO2 analytes

4
Applications
  • Indoor air quality monitoring
  • In-car comfort
  • Activates air-conditioning when O2 is below or
    CO2 is above a critical level
  • In-cabin comfort
  • Improve air conditions on flights
  • Blood gas analysis

5
Chip Design



Blue LED

Luminescent Sensor Spots



(doped sol-gel sensor materials)
Waveguide Series
(UV-patternable sol-gel)

Detector Array
6
Sol-Gel Materials
  • Doped sol-gel materials
  • Tetrathyl orthosilicate (TEOS)
  • Methyltriethyl orthosilicate (MTEOS)

inert porous inorganic silica matrix for
sensor immobilisation
Si(OR)4 2 H2O ROH SiO2
  • hydrolysis
  • condensation

7
UV-Patternable Sol-Gel Materials
  • UV-patternable sol-gel material
  • TEOS
  • Zirconium propoxide (ZrOP)
  • 3-(methoxysilyl)propyl methacrylate (MPTS)
  • Photoinitiator

8
UV-Patternable Sol-Gel Materials
Zirconia used for refractive index tuning
Total internal reflection
nair 1 nguiding ncladding
9
UV-Patternable Sol-Gel Materials
  • to create an organic network cross-linked to the
    inorganic silica/zirconia network by radical
    polymerisation
  • non soluble in a wide range of solvents

10
UV-Patternable Sol-Gel Materials
Photoinitiator
MPTS
11
Photolithography
  • Standard Mask-Aligner

12
Ridge Waveguides
Picture of ridge waveguides
3D-map of ridge waveguides
13
Ridge Waveguides Cross-Sections
Ridge Waveguides
Air
10 mm
Cladding Layer
30 mm
Silicon Substrate
14
Oxygen Sensing
  • O2 sensor Ru(dpp)3Cl2
  • Ruthenium-tris(4,7-diphenyl-1,
    10-phenanthroline) dichloride

l exc 470 nm
l em 610 nm
Fluorescence quenching described by Stern-Volmer
equation
15
Carbon Dioxide Sensing
  • CO2 sensor HPTS (pH indicator)
  • 8-hydroxy-1,3,6-pyrenetrisulfonate salt
  • in solution, equilibrium
  • acid form ? base form
  • production of acid in solution by dissolution of
    CO2
  • acidity changes the concentration of the
    conjugate base
  • specific excitation of the conjugate base at 470
    nm
  • collection of emission at 525 nm

16
Multi-Analyte Simultaneous Sensing
Detector Linear Detector Array
Excitation source Single Blue LED
525 nm
610 nm
470 nm
17
Sensor Deposition Techniques
  • Soft-lithography
  • polydimethylsiloxane (PDMS) stamp
  • To achieve
  • better control of the drop size
  • reproducibility
  • Pin-printing
  • metal pin
  • Ink-jet printing
  • print-head

18
Initial Results - Oxygen
CCD image
200 mm separation between the waveguides
Intensity profile
19
Initial Results - Oxygen
  • Stern-Volmer plot
  • High sensitivity for low concentrations
  • 0 -100 detectable range
  • Sensitivity tuned by sol-gel formulation

20
Conclusions
  • Demonstration of an oxygen multi-channel sensor
    chip
  • patterning of a series of waveguides
  • simultaneous detection of the luminescence
    produced by Ru(dpp)3 in each waveguide

21
Future work
  • Optimisation of the design parameters
  • dimension and refractive index of the waveguides
  • Optimisation of the printing method
  • to allow for deposition of CO2 and O2 sensor
    spots of specific diameter and thickness
  • Demonstration of a miniaturised portable
    multi-analyte sensor with RF communications

22
Acknowlegdements
  • Orla McGaughey
  • Aisling McEvoy
  • Jérôme Charmet
  • Brian D. MacCraith
  • Enterprise Ireland
  • Funding under Research Innovation Fund
    IF/2002/353
  • Optical Sensors Laboratory,
  • National Centre for Sensor Research,
  • Dublin City University,
  • Ireland
Write a Comment
User Comments (0)
About PowerShow.com