DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain react - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain react

Description:

MICHAEL A. INNIS*, KENNETH B. MYAMBO, DAVID H. GELFAND, AND MARY ANN D. BROW, ... Mid 1960s Microbiologist, Professor Thomas Brock, discovers Thermus aquaticus. ... – PowerPoint PPT presentation

Number of Views:301
Avg rating:3.0/5.0
Slides: 30
Provided by: Bun58
Category:

less

Transcript and Presenter's Notes

Title: DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain react


1
DNA sequencing with Thermus aquaticus DNA
polymeraseand direct sequencing of polymerase
chain reaction-amplified DNAMICHAEL A.
INNIS, KENNETH B. MYAMBO, DAVID H. GELFAND, AND
MARY ANN D. BROW, Cetus Corporation,
Emeryville, CA PNAS, 1988, 85 9436-9440,
  • Presented by
  • Charlotte Girondel Bunnee Goldberg

2
Thermus aquaticus
3
Thermus aquaticus
4
Thermus aquaticus
5
Historical Perspective
  • Mid 1960s Microbiologist, Professor Thomas
    Brock, discovers Thermus aquaticus.
  • 1971 - Nobel Prize laureate H. Gobind Khorana and
    Kjell Kleppe, describes PCR process using DNA
    polymerase from E. coli.
  • 1976 Alice Chien colleagues isolates DNA
    polymerase from T. aquaticus.
  • 1983 Kary Mullis, Cetus Corp, optimizes PCR
    methods using TAQ polymerase
  • 1993 - Shares Nobel prize in Chemistry with
    Michael Smith for refining PCR methods.

6
Historical Perspective
  • Mid 1960s Microbiologist, Professor Thomas
    Brock, discovers Thermus aquaticus.
  • 1971 - Nobel Prize laureate H. Gobind Khorana and
    Kjell Kleppe, describes PCR process using DNA
    polymerase from E. coli.
  • 1976 Alice Chien colleagues isolates DNA
    polymerase from T. aquaticus.
  • 1983 Kary Mullis, Cetus Corp, optimizes PCR
    methods using TAQ polymerase
  • 1993 - Shares Nobel prize in Chemistry with
    Michael Smith for refining PCR methods.

7
Historical Perspective
  • Mid 1960s Microbiologist, Professor Thomas
    Brock, discovers Thermus aquaticus.
  • 1971 - Nobel Prize laureate H. Gobind Khorana and
    Kjell Kleppe, describes PCR process using DNA
    polymerase from E. coli.
  • 1976 Alice Chien colleagues isolates DNA
    polymerase from T. aquaticus.
  • 1983 Kary Mullis, Cetus Corp, optimizes PCR
    methods using TAQ polymerase
  • 1993 - Shares Nobel prize in Chemistry with
    Michael Smith for refining PCR methods.

8
Historical Perspective
  • Mid 1960s Microbiologist, Professor Thomas
    Brock, discovers Thermus aquaticus.
  • 1971 - Nobel Prize laureate H. Gobind Khorana and
    Kjell Kleppe, describes PCR process using DNA
    polymerase from E. coli.
  • 1976 Alice Chien colleagues isolates DNA
    polymerase from T. aquaticus.
  • 1983 Kary Mullis, Cetus Corp, optimizes PCR
    methods using TAQ polymerase
  • 1993 - Shares Nobel prize in Chemistry with
    Michael Smith for refining PCR methods.

9
Purpose
  • To optimize PCR methods using an M13 DNA strand
    along with Taq DNA polymerase and direct
    sequencing using the Sanger sequencing method.
  • Automating the preparation of DNA templates and
    performing the sequencing reactions.

10
What is PCR?
  • PCR In vitro technique using DNA polymerase to
    exponentially amplify dsDNA fragment.
  • Asymmetric PCR Used to amplify one strand more
    than the other.

11
Sequencing Methods
ss M13mp10 DNA with a 400-base insert in the
EcoRI site of the polylinker. 20-mer primers
from the 5 end RG05 (5'-AGGGTTTTCCCAGTCACGAC-3')
Reverse primer RG02(5'-GTGTGGAATTGTGAGCGGAT3'),
respectively. PCR Cycle 35 cycles of
denaturation Each cycle at 93C for 30 sec,
primer annealing at 50C for 1 min, and
extension at 72C for 1 min.
ss M13mp10 DNA with a 400-base insert in the
EcoRI site of the polylinker. 20-mer primers
from the 5 end RG05 (5'-AGGGTTTTCCCAGTCACGAC-3')
Reverse primer RG02(5'-GTGTGGAATTGTGAGCGGAT3'),
respectively. PCR Cycle 35 cycles of
denaturation Each cycle at 93C for 30 sec,
primer annealing at 50C for 1 min, and
extension at 72C for 1 min.
ss M13mp10 DNA with a 400-base insert in the
EcoRI site of the polylinker. 20-mer primers
from the 5 end RG05 (5'-AGGGTTTTCCCAGTCACGAC-3')
Reverse primer RG02(5'-GTGTGGAATTGTGAGCGGAT3'),
respectively. PCR Cycle 35 cycles of
denaturation Each cycle at 93C for 30 sec,
primer annealing at 50C for 1 min, and
extension at 72C for 1 min.
  • 1. Template Preparation
  • 2. Sequencing Rxns
  • a. Annealing
  • b. Labeling
  • c. Extension/
  • Termination
  • Sequencing PCR Products
  • Single-stranded M13mp10 DNA prepared.

12
Sequencing Methods
ss M13mp10 DNA with a 400-base insert in the
EcoRI site of the polylinker. 20-mer primers
from the 5 end RG05 (5'-AGGGTTTTCCCAGTCACGAC-3')
Reverse primer RG02(5'-GTGTGGAATTGTGAGCGGAT3'),
respectively. PCR Cycle 35 cycles of
denaturation Each cycle at 93C for 30 sec,
primer annealing at 50C for 1 min, and
extension at 72C for 1 min.
ss M13mp10 DNA with a 400-base insert in the
EcoRI site of the polylinker. 20-mer primers
from the 5 end RG05 (5'-AGGGTTTTCCCAGTCACGAC-3')
Reverse primer RG02(5'-GTGTGGAATTGTGAGCGGAT3'),
respectively. PCR Cycle 35 cycles of
denaturation Each cycle at 93C for 30 sec,
primer annealing at 50C for 1 min, and
extension at 72C for 1 min.
ss M13mp10 DNA with a 400-base insert in the
EcoRI site of the polylinker. 20-mer primers
from the 5 end RG05 (5'-AGGGTTTTCCCAGTCACGAC-3')
Reverse primer RG02(5'-GTGTGGAATTGTGAGCGGAT3'),
respectively. PCR Cycle 35 cycles of
denaturation Each cycle at 93C for 30 sec,
primer annealing at 50C for 1 min, and
extension at 72C for 1 min.
  • 1. Template Preparation
  • 2. Sequencing Rxns
  • a. Annealing
  • b. Labeling
  • c. Extension/
  • Termination
  • Sequencing PCR Products
  • Consist in hybridizing an oligonucleotide primer
    to the prepared template.
  • Material Primer, template, Taq sequencing
    buffer.
  • Performed for each set of four sequencing
    reactions.

13
Sequencing Methods
ss M13mp10 DNA with a 400-base insert in the
EcoRI site of the polylinker. 20-mer primers
from the 5 end RG05 (5'-AGGGTTTTCCCAGTCACGAC-3')
Reverse primer RG02(5'-GTGTGGAATTGTGAGCGGAT3'),
respectively. PCR Cycle 35 cycles of
denaturation Each cycle at 93C for 30 sec,
primer annealing at 50C for 1 min, and
extension at 72C for 1 min.
ss M13mp10 DNA with a 400-base insert in the
EcoRI site of the polylinker. 20-mer primers
from the 5 end RG05 (5'-AGGGTTTTCCCAGTCACGAC-3')
Reverse primer RG02(5'-GTGTGGAATTGTGAGCGGAT3'),
respectively. PCR Cycle 35 cycles of
denaturation Each cycle at 93C for 30 sec,
primer annealing at 50C for 1 min, and
extension at 72C for 1 min.
ss M13mp10 DNA with a 400-base insert in the
EcoRI site of the polylinker. 20-mer primers
from the 5 end RG05 (5'-AGGGTTTTCCCAGTCACGAC-3')
Reverse primer RG02(5'-GTGTGGAATTGTGAGCGGAT3'),
respectively. PCR Cycle 35 cycles of
denaturation Each cycle at 93C for 30 sec,
primer annealing at 50C for 1 min, and
extension at 72C for 1 min.
  • 1. Template Preparation
  • 2. Sequencing Rxns
  • a. Annealing
  • b. Labeling
  • c. Extension/
  • Termination
  • Sequencing PCR Products
  • Extending primer with DNA polymerase in 4
    separate reaction mixtures
  • Material a labeled dNTP (dATPa-35S) in
    limiting concentrations, mixture of unlabeled
    dNTPs (C-G-T)

14
Sequencing Methods
ss M13mp10 DNA with a 400-base insert in the
EcoRI site of the polylinker. 20-mer primers
from the 5 end RG05 (5'-AGGGTTTTCCCAGTCACGAC-3')
Reverse primer RG02(5'-GTGTGGAATTGTGAGCGGAT3'),
respectively. PCR Cycle 35 cycles of
denaturation Each cycle at 93C for 30 sec,
primer annealing at 50C for 1 min, and
extension at 72C for 1 min.
ss M13mp10 DNA with a 400-base insert in the
EcoRI site of the polylinker. 20-mer primers
from the 5 end RG05 (5'-AGGGTTTTCCCAGTCACGAC-3')
Reverse primer RG02(5'-GTGTGGAATTGTGAGCGGAT3'),
respectively. PCR Cycle 35 cycles of
denaturation Each cycle at 93C for 30 sec,
primer annealing at 50C for 1 min, and
extension at 72C for 1 min.
ss M13mp10 DNA with a 400-base insert in the
EcoRI site of the polylinker. 20-mer primers
from the 5 end RG05 (5'-AGGGTTTTCCCAGTCACGAC-3')
Reverse primer RG02(5'-GTGTGGAATTGTGAGCGGAT3'),
respectively. PCR Cycle 35 cycles of
denaturation Each cycle at 93C for 30 sec,
primer annealing at 50C for 1 min, and
extension at 72C for 1 min.
  • 1. Template Preparation
  • 2. Sequencing Rxns
  • a. Annealing
  • b. Labeling
  • c. Extension/
  • Termination
  • Sequencing PCR Products
  • Performed 4 separate extension/termination by
    adding aliquots of the labeling mix to each below
  • "G-mix" (dNTP, ddGTP, MgCI2)
  • "A-mix (dNTP, ddATP, MgCl2)
  • "T-mix" (dNTP, ddTTP, MgCl2)
  • "C-mix" (dNTP, ddCTP, MgCl2).
  • loaded onto buffer gradient sequencing gel

15
Sequencing Methods
ss M13mp10 DNA with a 400-base insert in the
EcoRI site of the polylinker. 20-mer primers
from the 5 end RG05 (5'-AGGGTTTTCCCAGTCACGAC-3')
Reverse primer RG02(5'-GTGTGGAATTGTGAGCGGAT3'),
respectively. PCR Cycle 35 cycles of
denaturation Each cycle at 93C for 30 sec,
primer annealing at 50C for 1 min, and
extension at 72C for 1 min.
ss M13mp10 DNA with a 400-base insert in the
EcoRI site of the polylinker. 20-mer primers
from the 5 end RG05 (5'-AGGGTTTTCCCAGTCACGAC-3')
Reverse primer RG02(5'-GTGTGGAATTGTGAGCGGAT3'),
respectively. PCR Cycle 35 cycles of
denaturation Each cycle at 93C for 30 sec,
primer annealing at 50C for 1 min, and
extension at 72C for 1 min.
ss M13mp10 DNA with a 400-base insert in the
EcoRI site of the polylinker. 20-mer primers
from the 5 end RG05 (5'-AGGGTTTTCCCAGTCACGAC-3')
Reverse primer RG02(5'-GTGTGGAATTGTGAGCGGAT3'),
respectively. PCR Cycle 35 cycles of
denaturation Each cycle at 93C for 30 sec,
primer annealing at 50C for 1 min, and
extension at 72C for 1 min.
  • 1. Template Preparation
  • 2. Sequencing Rxns
  • a. Annealing
  • b. Labeling
  • c. Extension/
  • Termination
  • Sequencing PCR Products
  • Asymmetric PCR to prepare the templates
  • Sequencing The primer is labeled, labeling step
    omitted, directly chain-termination reaction.
  • gel electrophoresis

16
Steps in PCR
Supply
1. DNA template
2. Primers
3. dNTP
4. TAQ Pol
17
Sanger Sequencing Method
18
Results . Figure 1A
19
Results . Figure 1A cont.
20
Results . 1B
21
Problems to resolve
  • Deal with misincorporation of dNTPs and ddNTPs
  • Sequence through GC-rich DNA
  • Resolve gel compression
  • Facilitate automation for large-scale sequencing
    projects

22
Results . Figure 2
c. Chase with concentrated dNTP
A. Standard ddNTP termination lanes
B. Lanes limited by 1 of the dNTPs
23
Results . Figure 3
The effects of temperature on the labeling
reaction
24
Results . Figure 3
The effect of incubation time on the extension
reaction
  • High dNTP concentrations to ensure maximum
    processivity and fidelity

25
Results . Figure 4
  • Sequencing through GC-Rich DNA and eliminating
    band compression
  • Base analogs
  • c7GTP
  • dITP

26
Results . Figure 5
Coupling DNA Sequencing to the PCR
27
Discussion
  • Taq DNA polymerase has high processivity
  • Add NT at a rate of 60 nt/ sec
  • No 3 exonuclease activity
  • Band compressions resolved using
  • Coupling asymmetric PCR with direct sequencing
  • GTP base analog, C7 GTP
  • higher percentage gel (7 acrylamide at 21 hrs)

28
PCR Today
  • All sequencing is done with dideoxy Sanger method
    now.
  • Automated DNA sequence analysis (fluorescent
    ddNTPs).
  • Capillaries sequencers much faster.
  • PCR with taq polymerase
  • New ways to prepare templates

29
Further Reading
  • Brock, Thomas D. (Oct 11, 1985). "Life at high
    temperatures." Science. 230132.
  • Chien A, Edgar DB, Trela JM. Deoxyribonucleic
    Acid Polymerase from the Extreme Thermophile
    Thermus aquaticus. J of Bacteriology. 1976, p.
    1550-1557
  • Kary Mullis, Dancing Naked in the Mind Field
    (Pantheon Books, 1998).
  • Kleppe K, Ohtsuka E, Kleppe R, Molineux I,
    Khorana HG.J Mol Biol. 1971 Mar
    1456(2)341-61.Studies on polynucleotides. XCVI.
    Repair replications of short synthetic DNA's as
    catalyzed by DNA polymerases.
Write a Comment
User Comments (0)
About PowerShow.com