Porfyriny, lucov barviva, Hb Porphyrins, bile pigments, Hb - PowerPoint PPT Presentation

1 / 28
About This Presentation
Title:

Porfyriny, lucov barviva, Hb Porphyrins, bile pigments, Hb

Description:

... 1: HO -1 and non- heme form (from plants) via DMT1 divalent metal transporter ... 2 is done by DMT1 divalent metal transporter; it formed intracellular ... – PowerPoint PPT presentation

Number of Views:323
Avg rating:3.0/5.0
Slides: 29
Provided by: profvcla
Category:

less

Transcript and Presenter's Notes

Title: Porfyriny, lucov barviva, Hb Porphyrins, bile pigments, Hb


1
Porfyriny, lucová barviva, HbPorphyrins, bile
pigments, Hb
  • Prof. Dr. V. Pelouch, CSc.

2
Syntéza porfyrinu a Hb
  • Synthesis of porphyrins and Hb

3
Syntéza Hb Synthesis of Hb
  • Zacíná v mitochochondrii kondensací sukcinylKoA
    (z KC) a glycinu ? NÁSLEDUJE dekarbo-xylace a
    tvorba d- aminolevulinatu
  • 2 d aminolevulinate
  • prechází do cytosolu ? tvorí se
    porfobilinogen
  • First reaction in mitochondriaconden-sation of
    succinylCoA (from KC) and glycine ? NEXT REACTION
    de-carboxylation and formation of d-
    aminole-vulinate
  • 2 d aminolevulinate
  • is transfered into cytosol ? formed
    porfobilino-
  • gene

4
(No Transcript)
5
(No Transcript)
6
(No Transcript)
7
Dalí reakce Next reactions
  • 4 porfobilinogen ? linear tetrapyrrol ?
    urophorfylinogen ? cophroporfylinogen (cytosol) ?
    in mito-chondria protopor-fylinogen ?
    protopho-fylin ? incorporation of Fe ? Hb
  • Side chains A (acetyl) are changed by
    decarbo-xylation to M (metyl) and P (propionyl)
    by decarb. and dehydrogenation to V (vinyl)
  • 4 porfobilinogen ? lineární tetrapyrol ?
    uroporfylinogen ? coproporfylinogen (cytosol) ?
    in mito-chondria protopor-fylinogen ?
    proto-porfylin ? incorpo-race Fe ? Hb
  • Postranní retezce A (acetyl) se dekarboxylací
    mení na M (metyl), P (propionyl) dekarbox. a
    dehydrogen. na V (vinyl)

8
Heme biosynthesis
  • Almost 85 of heme biosynthesis occurs in the
    bone marrow,
  • much smaller percentage in liver.
  • Both the mitochondria and cytoplasm are involved
    in this pathway

9
Degradace porfyrinu
  • Degradation of porphyrins

10
DEGRADATION of Hb
  • Globin is removed,
  • red heme is degradated in endoplasmic reticulum
    (liver, spleen, bone marrow) by NADPH oxygenase
  • biliverdin and bilirubin are produced
  • Transport of bilirubin (in binding to albumin)
    into hepatocytes
  • Conjugation
  • Transport in bile ( gall)

11
DEGRADACE Hb
  • Globin je odstranen
  • Cervený hem je degradován v endoplasmatickém
    retikulu (játra, slezina,kostní dren) pomocí
    NADPH oxygenasy
  • biliverdin a bilirubin vznikají
  • Transport of bilirubinu (ve vazbe na albumin) do
    hepatocytu
  • Konjugace
  • Transport ve luci

12
Degradation of Hb
  • Icterus
  • pre-, intra- and posthepatal
  • origin

13
(No Transcript)
14
IRON METABOLISM
15
Text to previous slide Control of mammalian
iron metabolism
  • Transport molecule of iron is transferrin
  • (glycoprotein, m.w. 80 kDa contains two
    binding sites - both sites are structural very
    similar, functional different under
    physiological state only about 30 are
    occupied).
  • High level of iron in body (all positions are
    occupied) then, non- transferrin- bound iron
    appears.

16
IRON
  • Iron is localized in hemoproteins Hb, ferritin
    - transport protein - quantity - see two next
    slides, myoglobin, cytochromes - see also
    previous slide, furthermore, aconitase (enzyme
    from Krebs cycle, here Fe - ions are bound to
    S), NADPH oxidase
  • Toxic effect of iron (Haber Weiss- Fenton
    reactions)
  • Fe2 O2 ? Fe3 .O2-
  • 2 .O2- 2H ? H2O2
    2 O2
  • Fe2 H2O2 ? Fe3 .OH
    OH-
  • Formation of hydroxyl radical .OH, it means
    the production of free radicals see special
    lecture for details
  • Inhibition of oxidation of Fe2 to Fe3 is
    done by either with ceruloplasmin, or by
    binding of Fe2 to tranferrin, ferritin,
    lactoferrin or iron chelatation

17
(No Transcript)
18
Text to next slide
  • Fig. 2 (lower) - Intestinal iron uptake
  • iron from nutrition is absorbed to
    enterocytes of duodenum in both heme form (from
    animal sources) via heme carrier protein HCP in
    enterocates is degradated by hemeoxygenase 1 HO
    -1 and non- heme form (from plants) via
    DMT1 divalent metal transporter after their
    reduction by duodenum cytochrome b-like
    ferrireductase (Dcytb) in the presence of
    ascorbic acid or some AAs (cystein, histidin)
  • Fig 3 (upper) - Recirculation of erythocytes
    iron in macrophage,
  • Ery - life span 120 days, then Ery in
    reticulo-endothelial system of macrophages
    degradated, Hb is released globin (Gb) and
    heme structure persisted releasing of Fe 2 is
    done by DMT1 (divalent metal transporter -
    intracellular pool of iron. In plasma is bound
    to haptoglobin (Hp), into cell is transfered by
    receptor CD 136 where iron is release by
    hemoxygenase HO 1

19
Recirculation of erythrocyte Fe in macro-phage
(fig.3) Intestinal Fe uptake (fig. 2)
20
Haptoglobin (Hp)
  • Glycoprotein (two a chains, two ß chains) is
    formed in liver
  • Haptoglobin bound Hb and complex (C) arised
    Hp-Hb
  • C is removed from blood stream by RES
  • Physiological role probably block again
  • formation of hydroxyl radical (.OH)
  • - see oxidation of iron

21
Bilirubin
  • Bilirubin (B) je vázán na albumin (1 vysoko- a 1
    nizkoaffinitní místo 25 mg B/ 100 ml plasma
  • 1g Hb 35 mg B, produkce 250 - 350 mg B/den
  • Dva typy B
  • Prímý B konjugovaný
  • Neprímý B nekonju-
  • govaný
  • Bilirubin (B) is bound to albumin (1 high, and 1
    low-affinity sites 25 mg B /100 ml of plasma
  • 1g Hb 35 mg B, production 250 - 350 mg B/day
  • Two types of B
  • Direct B conjugated
  • Indirect B unconju-
  • gated

22
(No Transcript)
23
Clinical aspects
  • Serum Urine
    Urine fecal
  • B B
    u r o b i l i n o g e n
  • total up 1mg/dL absent 0-4/24h
    40-280/24h
  • direct 0,1-0,4
  • Indirect 0,2-0,7
  • 1mg 17,1µmol/l
  • i c t e r u s
    loutenka
  • hemolytic ? indirect absent ?
    ?
  • hepatitic ? dir, ind present
    ? ?
  • obstruct ? dir present
    absent trace to 0
  • d bilirubin ( high direct B then arised
    covalent binding between direct B and albumin -
    longer life time than conventional direct B)
  • Most of colorless urobilinogens formed in colon
    by fecal flora are oxidized to urobilinins
    (darkening of feces upon air is due to oxidation
    of residual urobilinogens)

24
(No Transcript)
25
Gene determined abnormalitites
  • Fotosensitivita a neurologické problémy jsou
    projevem tohoto onemocnení
  • Erytrocyty a játra jsou hlavní místem
    metabolických vyjádrení porfyrií.
  • Photosensitivity and neurological problems are
    common complaints.
  • Erytrocytes and liver are main places of
    metabolic disorders of porphyrias.

26
Further information
  • Series of hereditary and acquired diseases
    porphyrias disturbances in porphyrin metabolism
  • Several of these disorders excretion of heme
    precursors in the stool or urine - giving them
    dark collor
  • Accumulation of porphyrins in the skin
    exposure to light causes disfiguring (znetvorení,
    zohyzdení), poorly - healthing blisters (puchýre)
  • Neurological disturbances
  • Human vampiers porphyria sufferers (lights
    shynness, bizare appearance, drinking of blood
    to compensate heme deficinecy)

27
(No Transcript)
28
Bile pigments x bile lucová barviva
acids !!! lucové kyseliny!!!
  • lucová barviva bilirubin, biliverdin
  • (metaloproteiny)
  • lucové kyseliny primarní (cholová k.
  • v slabe alkalickém pH luci jako anion cholat),
    sekundární (deoxycholová, lithocholová)
  • (steroidní struktura odvozená od cholesterolu)
  • Bile pigments bilirubin, biliverdin
  • (metaloproteins)
  • Bile acids primary (cholic a. cholate and in
    weakly alkaline pH of bile as anion cholate),
    secondary acids (deoxycholic, lithocholic )
  • (steroid structure derived from cholesterol)
Write a Comment
User Comments (0)
About PowerShow.com