Spherical and cylindrical nanolayers: electronic states, quantum transitions Hayk Sarkisyan Russian-Armenian (Slavonic) University Yerevan State University - PowerPoint PPT Presentation

About This Presentation
Title:

Spherical and cylindrical nanolayers: electronic states, quantum transitions Hayk Sarkisyan Russian-Armenian (Slavonic) University Yerevan State University

Description:

Russian-Armenian (Slavonic) University. Yerevan State University. 2. 2 ... F(a,b,x) confluent hypergeometrical function. 17. 17. 4. Absorption coefficient. 18 ... – PowerPoint PPT presentation

Number of Views:87
Avg rating:3.0/5.0

less

Transcript and Presenter's Notes

Title: Spherical and cylindrical nanolayers: electronic states, quantum transitions Hayk Sarkisyan Russian-Armenian (Slavonic) University Yerevan State University


1
Spherical and cylindrical nanolayers electronic
states, quantum transitions Hayk
SarkisyanRussian-Armenian (Slavonic)
UniversityYerevan State University
2
The idea of size-quantisation
3
Some geometries of quantum dots
4
(No Transcript)
5
Fulerens and nanotubes
6
Simple models of layered systems
Spherical layer QD
Cylindrical layer QD
7
(No Transcript)
8
Fig. 1. GaInAs quantum rings Lorke et al (Phys.
Rev. Lett. 84, 2223 (2000)). 250?250 ??2.
9
Fig. 2. Bound structures of quantum layer
10
Fig. 3. Chakraborty-Pietilainen model (Phys.
Rev. Lett. 84, 2223 (2000))
Fig. 4. Smorodinsky-Winternitz model (Yadernaya
fizika 4, 625 (1966)).
11
2
1
Fig. 5. Difference between potentials
profiles 1. Chakraborty-Pietilainen model, 2.
Smorodinsky-Winternitz model
12
1. Parameters of quantum ring
Experimental data (Lorke et al - Phys. Rev.
Lett. 84, 2223 (2000)) quantum ring
InAs coating
GaAs inner radius 10 nm outer
radius from 30 to 70
nm thickness 2 nm
Cylindrical layer quantum dot
13
2. Models of confining potentials
Chakraborty-Pietilainen model (Phys. Rev. B
50, 8460 (1994)).
1.
2.
Model of the impenetrable cylindrical layer
quantum dot (Physica E 36, 114 (2007) )
3.
Smorodinsky-Winternitz model (Yadernaya
fizika 4, 625 (1966)).
4.
Radial analog of the Smorodinsky-Winternitz
potential
14
3. Quantum ring in the magnetic field
15
(No Transcript)
16
effective mass of the electron ( hole )
F(a,b,x) confluent hypergeometrical function.
17
4. Absorption coefficient
18
(No Transcript)
19
5. Influence of electric field

20
(No Transcript)
21
6. Rotator model
22
(No Transcript)
23
7. Electronic states in the spherical
nanolayer1. E.M. Kazaryan, A.A. Kostanyan, H.A.
Sarkisyan, J. Cont. Phys. (2007).2. M.A. Zuhair,
A.Kh. Manaselyan, H.A. Sarkisyan, J. Phys. Conf.
Ser. (2008).
24
(No Transcript)
25
Parabolic quantum well with hydrogen-like impurity
1A. A. Gusev, et al, Phys. At. Nucl., 2010, Vol.
73, (accepted).
26
(No Transcript)
27
(No Transcript)
28
THANK YOU!
Write a Comment
User Comments (0)
About PowerShow.com