The energy issue and the possible contribution of various nuclear energy production scenarios - PowerPoint PPT Presentation

1 / 92
About This Presentation
Title:

The energy issue and the possible contribution of various nuclear energy production scenarios

Description:

The energy issue and the possible contribution of various nuclear energy ... Hydrogen (electrolysis or reforming CS (CO2) Bio-Fuels -Transportation -Heating ... – PowerPoint PPT presentation

Number of Views:49
Avg rating:3.0/5.0
Slides: 93
Provided by: NIF
Category:

less

Transcript and Presenter's Notes

Title: The energy issue and the possible contribution of various nuclear energy production scenarios


1
The energy issue and the possible contribution of
various nuclear energy production scenarios
H.Nifenecker Scientific consultant
LPSC/CNRS Chairman of  Sauvons le Climat 
2
Global Heating Challenge
3
Models for emission (a) and concentrations of
CO2 (b)
(a)

(b)
4
The effort to do
Global Warming
  • 2004 Emissions 7,3 GtC (6,4 in 2000)
  • World population 6,3 Billions (6,0 in 2000)
  • Emission/capita 1,15 Ton C (1,06 in 2000)

Max. emission for temperature stabilization 3GtC
  • Objective for 2050
  • World Population(minimum) 9 Billions
  • Emission/capita 0.33 Ton

5
2004 emissions
  • World average 1,15 ton C/capita
  • USA 5,4 tons C/capita
  • Germany 2,8 tons C/capita
  • France 1.7 tons C/capita
  • China 0.75 tons C/capita

6
Origin of world CO2 emissions
7
Factors to control
Energy intensities
CO2 intensities
8
tCO2/tep
9
tCO2/elec
Role of electricity
tCO2/tep
10
Strategic role of Electricity
11
Electricity substitute to fossiles
-Transportation
  • Mass transportation
  • Electric car
  • Hydrogen (electrolysis or reforming CS (CO2)
  • Bio-Fuels

-Heating
  • Insulation
  • Thermal Solar
  • Biomass (wood, wastes, bio-gas)
  • Geothermal
  • Heat Pump
  • Electric Heat

12
Learn from the past
13
Comparison of electricity mixOECD vs France
14
First step electricity mix
Assume same mix for OECD as for France
15
Comparison of CO2 emissions for observed and
potential mix Gain 0.67
16
Second step Heatproduction with electricity
17
Total gain 0.3Residual  transport  CO2
18
(No Transcript)
19
Evolution of GHG emissions
Evolution of world GHG Emissions Increase
dominated by CO2
20
Origin of GHG emissions
21
GHG emissions by sectorDominant rôle of energy
sector
22
(No Transcript)
23
Building of scenariosExample of
IAASA-WECscenarios
24
Population projections
25
GDP Projections
26
Energy Demand
27
Energy demand per aggregate
28
Total primary energy B2
29
Nuclear B2
30
electricity in B2
31
Coal B2
32
nuclear electricity
33
IIASANuclear electricity in 2050compared to 2000
  • Baseline
  • Share of electricity multiplied by 1.64
  • Share of nuclear multiplied by 1.38
  • Nuclear multiplied by 2,26
  • 670 ppm
  • Share of electricity multiplied by 1.73
  • Share of nuclear multiplied by 1,55
  • Nuclear multiplied by 2,68
  • 480 ppm
  • Share of electricity multiplied by 1.98
  • Share of nuclear multiplied by 1,65
  • Nuclear multiplied by 3,26

34
Share of CO2less in electricityB2 470 ppm
35
Share of CO2less in electricityBaseline
36
Share of CO2less in electricityOECD
37
Share of CO2less in electricityAsia
38
Share of CO2less in electricityALM
39
Share of CO2less in electricityREF
40
CO2 concentrations
41
Relation GHG concentrationtemperature
42
(No Transcript)
43
IPCC scenarios
44
Evolution of CO2 emissionsin IPCC scenarios
45
IPCC projections
2030 tCO2lt50/ton Renewables 35
electricity Nuclear 18 electricity
46
IEAs successive Prospects fo Nuclear (World
Energy Outlook)
2020 2030 Mtoe TWh Mtoe TWh WEO
1998 604 2317 8 WEO 2000 617 2369 9 WEO
2002 719 2758 11 703 2697 9 WEO
2004 776 2975 12 764 2929 9 WEO
2006 861 3304 10 Alt. 2006
1070 4106 14
47
Prospect for nuclear production 2000-2030 TWh
(AIEA July 2006)
1400
1200
1000
2000
2010 b
800
2010 H
2020 b
600
2020 H
2030 b
2030 H
400
200
0
Am L Eur E
MOAs S Ext. O
Am N
W Eur
Afr
Pacif
48
(No Transcript)
49
Nuclear Intensive Scenarios
  • Scenarios by difference
  • P.A.Bauquis
  • D.Heuer and E.Merle
  • Objective oriented Scenarios
  • H.Nifenecker et al.

50
No miracle from renewables
  • Hydro
  • Limitation of ressource (Europe-USA)
  • Environment and localization (Am.Sud, Asie,
    Afrique, Russie)
  • Large Investments
  • Reliable, available
  • Might provide 20 of world electricity.
  • France 70TWh/450
  • Wind
  •  fatal  Energy
  • Limit 10-15 of electricity production

51
No miracle with renewables
  • Solar
  • PV Ideal for isolated sites (Africa, SE Asia).
    Mostly artificial in Developed Countries and very
    expansive
  • Thermal interesting for heating and warm water
  • Thermodynamic Fiability? Hot and dry climates
    Hot and dry climate.
  • Biomass
  • Bio-fuels (10 Mtep/50)
  • Wood energy.
  • Competition with food, energy and environmental
    balance

52
(No Transcript)
53
Pierre René Bauquis
54
Renewable energies
55
Renewable electricity
56
A vision of energy mix by 2050
57
Energy mix in 2050
58
CO2 emissions
59
Nuclear production
In Bauquis Scenario Nuclear production 0.6 Gtep
4 Gtep i.e. x 6.5
60
(No Transcript)
61
Elsa Merle and Daniel Heuer
Primary Energy (GTEP) 2000 2050
Fossils 7.5 7.5
Hydro 0.7 1.4
Wood 1.2 1.1
Renewable 0.2 5.2
Nuclear 0.6 5.2
Total 10.2 20.4
Hypothesis 2050
  • Stabilization of fossile contribution
  • World energy consumption x 2
  • Renewable nuclear
  • Multiplication by factor 8
  • Then increase by 1.2/year up to 2100

Nuclear
62
(No Transcript)
63
Objective oriented scenariosH.Nifenecker et al.
64
2000 IIASA-WEC Scenarios
  • A strong growth
  • A1 Oil
  • A2 Coal
  • A3Gaz
  • B Middle of the road
  • C Low energy intensity. High electricity
  • C1 Ren.Gaz
  • C2 Ren.Nuclear

65
GDP/cap
66
Energy intensities
67
World GDP
B2 110 000
68
Primary energy per fuel
69
Exhaustion of fossile reserves
Exhaustion of fossile reserves (Gtoe)
70
2030-2050
2030
  • Minimize use of fossils for Electricity
  •  Reasonable  Development of Nuclear
  • OECD 85
  • Transition 50
  • China, India, Latin America 30

3000 GWe Nuclear
2050
  • Minimize use of coal and gas
  • 30 coal China, India 30 gas Russia 100
    Africa
  • 7500 GWe Nucléaire

71
Scenario no coal no gaz in 2050
B218000, Nuclear1450
72
CO2/GDP
73
CO2/primen
74
Gestion of Natural Uranium Reserves
75
Unat exhaustion
76
Breeding Cycles
77
U-Pu vs Th-U
U-Pu versus Th-U cycles
  • U-Pu
  • Fast Spectra
  • Pu fuel
  • 1.2 GWe reactors
  • Solid fuels
  • 1 year cooling
  • 25 years doubling time
  • Th-U
  • Thermal Spectra
  • Pu, then 233U fuel
  • 1 GWe reactors
  • Molten Salts fuel
  • 10 days fuel cycling
  • 25 years doubling time

78
Nb GWe
79
Pu inventory
80
Nb GWe Th-U
81
U3 inventory
82
Trajectory
83
Stabilisation T
  • Stabilization of CO2 concentration to 450 ppm
  • Stabilization of temperature

84
(No Transcript)
85
E.Merle, D.HeuerAlternative3 components
86
Reactor types
Reactor type 3rd Generation Sodium Fast Neutron Reactors Thorium molten salt reactor
Power(GWe) 1.45 1.0 1.0
Date 2010 2025 2030
Fuel UOX Mox U-Pu Thorium 233U
Fissile component 4.9 (235U) 11 (239Pu) 3 (233U)
Scenario without Th
Plutonium Production 250 kg/year 300 kg/year (breeding) -
Scenario with Th
233U Balance 130 kg/year 500 kg/year breeding
Pu Balance 130 kg/year -200 kg/year incineration 4 kg/year
87
3 components
  • 233U production
  • 450 PWR and 300 FNR
  • Les RNR ferment le cycle U/Pu
  • natU consumption
  • 7 million tons by 2100
  • 10 times less fissile matter in fuel cycle
  • Minor actinides production minimized

88
(No Transcript)
89
R and D needsstandard reactors
  • PWR reactors
  • Selective reprocessing extraction of Cs, Sr and
    M.A.
  • Th-Pu MOx fuel in order to produce U233
  • Candu type reactors
  • Use of Th-Pu and, then Th-U3 fuel
  • Reprocssing of Th-U3 fuel
  • Optimization of fuel regeneration

90
R and D needsfast neutron reactors
  • Sodium cooled
  • Void coefficient
  • Core Recompaction
  • Th blanket
  • Reprocessing of Th blanket
  • Lead cooled reactors
  • Corrosion problems
  • Pb-Bi alloys
  • Molten salt cooled reactors
  • Chemical composition
  • Corrosion
  • Gas cooled reactors
  • Reprocessing of refractory fuels

91
R and D needsmolten salt reactors
  • Neutron spectrum optimization
  • Corrosion
  • Fuel reprocessing

92
Proliferation
  • Political or technical question?
Write a Comment
User Comments (0)
About PowerShow.com