A NUCLEAR SPIN QUANTUM COMPUTER IN SILICON - PowerPoint PPT Presentation

About This Presentation
Title:

A NUCLEAR SPIN QUANTUM COMPUTER IN SILICON

Description:

ELECTRON BEAM LITHOGRAPHY. CENTRE FOR QUANTUM COMPUTER TECHNOLOGY ... Atom Lithography and AFM measurement of test structures. Theory of Coherence and Decoherence ... – PowerPoint PPT presentation

Number of Views:78
Avg rating:3.0/5.0
Slides: 26
Provided by: andreisko
Category:

less

Transcript and Presenter's Notes

Title: A NUCLEAR SPIN QUANTUM COMPUTER IN SILICON


1
A NUCLEAR SPINQUANTUM COMPUTERIN SILICON
  • National Nanofabrication Laboratory, School of
    Physics, University of New South Wales
  • Laser Physics Centre, Department of Physics,
    University of Queensland
  • Microanalytical Research Centre, School of
    Physics, University of Melbourne

2
MOTIVATION
  • Quantum Computers will be the worlds fastest
    computing devices, e.g. decryption (prime factors
    of a composite number)- Factor a 400 digit
    number 108 times faster
  • Spin-off technology development for conventional
    silicon processing at the sub-1000Å scale

3
(No Transcript)
4
QUANTUM MECHANICAL COMPUTATION
5
QUANTUM LOGIC
  • Any quantum computation can be reduced to a
    sequence of 1 and 2 qubit operations
  • H ingt H1 H2 H3 .... Hn ingt
  • Conventional operations NOT, AND
    Quantum operations NOT, CNOT

6
QUANTUM ALGORITHMS
  • Superposition and entanglement enables massive
    parallel processing
  • Shors prime factorization algorithm (1994)
    relevant to cryptography
  • Grovers exhaustive search algorithm (1996)

7
EXPERIMENTAL QUANTUM COMPUTATION
  • Bulk spin resonance (Stanford, MIT) 1-10?
    qubits
  • Trapped cooled ions (Los Alamos, Oxford)
    1-100? qubits
  • True quantum computer may require 106 qubits
  • Solid state (semiconductor) quantum computer
    architectures
  • Proposed using electron and nuclear spin to store
    qubits
  • Electrons D. Loss and D. DiVincenzo, Phys. Rev.
    A 57, 120 (1998).
  • Nuclei V. Privman, I. D. Vagner, and G.
    Kventsel, Phys. Lett. A in press,
    quant-ph/9707017.

8
In SiP at Temperature (T)1K electron
relaxation time 1 hour nuclear relaxation time
1013 hours
9
A Silicon-based nuclear spin quantum computerB.
E. Kane, Nature, May 14, 1998
10
A J GATES
11
Fabrication Pathways
  • Fabrication strategies
  • (1) Nano-scale lithography
  • Atom-scale lithography using STM H-resist
  • MBE growth
  • EBL patterning of A, J-Gates
  • EBL patterning of SETs
  • (2) Direct 31P ion implantation
  • Spin measurement by SETs or magnetic resonance
    force microscopy
  • Major collaboration with Los Alamos National
    Laboratory, funded through US National Security
    Agency

12
(1) Nano-scale Lithography
13
(No Transcript)
14
SINGLE ELECTRON TRANSISTORS
15
ELECTRON BEAM LITHOGRAPHY
Sub-300Å AuPd gates on GaAs
16
UNSW 3-CHAMBER UHV STM / AFM, MBE, ANALYSIS
  • 25K - 1500K Variable T
  • 3-Chamber UHV
  • Plus Si-MBE, RHEED, LEED, Auger

17
SRC MANAGEMENT STRUCTURE
18
PROJECT TIMETABLE
19
SUMMARY
  • Quantum Computers have enormous potential
  • Solid-state quantum computation is the best
    candidate for scalability
  • Offers integration with existing Si technology
  • UNSW strategy to use qubits stored on nuclear
    spins (concept by Kane)

20
The Melbourne Node
Node Team Leader Steven Prawer
Test structures created by single ion implantation
Atom Lithography and AFM measurement of test
structures
Theory of Coherence and Decoherence
21
Key Personnel
  • Students
  • Paul Otsuka
  • MatthewNorman
  • Elizabeth Trajkov
  • Brett Johnson
  • Amelia Liu
  • Leigh Morpheth
  • David Hoxley
  • Andrew Bettiol
  • Deborah Beckman
  • Jacinta Den Besten
  • Kristie Kerr
  • Louie Kostidis
  • Poo Fun Lai
  • Jamie Laird
  • Kin Kiong Lee
  • Geoff Leech DeborahLouGreig
  • Ming Sheng Liu
  • Glenn Moloney
  • Julius Orwa
  • Arthur Sakalleiou
  • Russell Walker
  • Cameron Wellard
  • Academic Staff
  • David Jamieson
  • Steven Prawer
  • Lloyd Hollenberg
  • Postdoctoral Fellows
  • Jeff McCallum
  • Paul Spizzirri
  • Igor Adrienko
  • 2
  • Infrastructure
  • Alberto Cimmino
  • Roland Szymanski
  • William Belcher
  • Eliecer Para

22
Single Ion Implantation Fabrication Strategy
Etch latent damage metallise
Read-out state of qubits
MeV 31P implant
Resist layer
Si substrate
23
MeV ion etch pits in track detector
  • Single MeV heavy ions are used to produce latent
    damage in plastic
  • Etching in NaOH develops this damage to produce
    pits
  • Light ions produce smaller pits

3. Etch
2. Latent damage
1. Irradiate
From B.E. Fischer, Nucl. Instr. Meth. B54 (1991)
401.
24
Single ion tracks
Depth
  • Latent damage from single-ion irradiation of a
    crystal (Bi2Sr2CaCuOx)
  • Beam 230 MeV Au
  • Lighter ions produce narrower tracks!

1 mm
3 mm
5 mm
7.5 mm
3 nm
From Huang and Sasaki, Influence of ion velocity
on damage efficiency in the single ion target
irradiation system Au-Bi2Sr2CaCu2Ox Phys Rev B
59, p3862
25
Project Management - A distributed system
Director Clark
Deputy Director Milburn
Theory/Modelling
Array fabrication
Readout
SET Dzurak
Magnetic Resonance (LANL)
Quantum Optics Rubeinstein-Dunlop
Single Ion Implantation Jamieson
Atom Lithography Prawer
Silicon MBE Simmons
Write a Comment
User Comments (0)
About PowerShow.com