Physics, Chemistry and Biology of Atmospheric Composition and Climate Change - PowerPoint PPT Presentation

1 / 37
About This Presentation
Title:

Physics, Chemistry and Biology of Atmospheric Composition and Climate Change

Description:

Winkler, Wagner et al. 2004. Onset activities for different ... Paul E. Wagner, Paul Winkler, Aron Vrtala. Fz Julich, Germany: Thomas Mentel, Tatu Anttila ... – PowerPoint PPT presentation

Number of Views:152
Avg rating:3.0/5.0
Slides: 38
Provided by: hannave
Category:

less

Transcript and Presenter's Notes

Title: Physics, Chemistry and Biology of Atmospheric Composition and Climate Change


1
Physics, Chemistry and Biology of Atmospheric
Composition and Climate Change
  • Markku Kulmala, Pertti Hari, Ari Laaksonen, Timo
    Vesala and Yrjö Viisanen

2
Olemme osoittaneet
  • Jatkuvat mittaukset luonnossa ovat erittäin
    tehokkaita
  • Ilmakehän aerosolihiukkasten muodostuminen on
    tärkeää ympäri maapallon
  • ilmastovaikutus hiukkaset kasvavat
    pilvipisaroiksi ja viilentävät ilmastoa
  • terveysvaikutukset
  • Boreaalinen metsävyöhyke toimii
    aerosolihiukkasten lähteenä ja hidastaa täten
    ilmastonmuutosta
  • Selvä yhteys aerosolimuodostuksen ja hiilinielun
    välillä
  • Runsaasti biologian, kemian, fysiikan ja
    meteorologian välisiä kytkentöjä, jotka
    selittävät mm. aerosolihiukkasten muodostumista
  • hiukkasten synty rikkihappo(ammoniakkivesi)
  • hiukkasten kasvu fotosynteesin sivutuotteiden
    hapettuminen

3
Focus/Tutkimustavoitteet
  • Ilmakehän aerosolihiukkasten synty- ja
    kasvuprosessit
  • Biologisten prosessien muodostamien orgaanisten
    höyryjen vaikutus pienhiukkasiin globaalisti
  • Aerosolit-pilvet-ilmasto vuorovaikutukset
  • Pienhiukkasten aiheuttama säteilypakote
  • Ekosysteemien varsinkin pohjoisen
    havumetsävyöhykkeen ja ilmakehän
    vuorovaikutukset

4
Lähestymistavat
  • Kokeellinen
  • laboratoriokokeet
  • kenttämittaukset (jatkuvat ja mittauskampanjat)
  • mittausmentelmien ja instrumenttien kehittäminen
  • Teoreettinen
  • perusteorioiden kehittäminen
  • simulaatiot
  • tietokonemallien kehittäminen
  • Moni- ja poikkitieteinen
  • Fysiikka, kemia, meteorologia, biologia

5
(No Transcript)
6
Primary sources
Secondary sources
WP 5. Nucleation, Theories and Experiments
WP 4. Chemistry and Thermodynamics of organic
aerosols
WP 7. Emission of particles in Europe
WP 6. Formation and growth of atmospheric aerosols
WP 3. Atmospheric aerosol precursor chemistry
WP 2. Aerosol source emission and deposition
fluxes
WP 8. Parameterisation of aerosol formation
for large scale models
WP 1. Fluxes of biogenic precursor compounds
WP 10. Atmospheric gas-aerosol- cloud interactions
Global/ Regional Change
Global/ Regional Change
WP 9. Modelling of regional and
global distribution of aerosols and
their contribution to radiative forcing
and regional pollution
? Climate/Health effects ?
7
Research Chain
  • Molecular properties
  • Nucleation
  • Aerosol Dynamics
  • Boundary Layer Dynamics
  • Regional Scale
  • Global Scale

8
Research Chain IIa
  • Nucleation
  • molecular properties, potentials
  • MD- and MC simulations
  • thermodynamics
  • classical theories
  • laboaratory experiments
  • Aerosol Dynamics
  • nucleation, condensation, coagulation, deposition
  • connections to atmospheric chemistry
  • numerical models
  • laboratory experiments

9
Research Chain IIb
  • Boundary Layer Dynamics
  • aerosol dynamics meteorology
  • observed aerosol formation events
  • Regional Scale
  • Lagrangian and Eulerian models
  • air masses
  • observations
  • Global Scale
  • modelling
  • global observations groundbase, airborne,
    sattelites

10
Processes
  • Nucleation
  • Ternary Nucleation
  • H2SO4-NH3-H2O
  • Initial steps of the growth
  • Nano-Kohler
  • Heterogeneous Nucleation
  • Growth
  • Organic vapours
  • Aerosol dynamics
  • competition between processes

Kulmala Science 302, 1000-1001, 2003
11
Growth rates are based on size evolution from Air
Ion Spectrometer (developed by University of
Tarto)
12
Growth as a function of size
  • From DMPS and ion spectrometer data growth rate
    non-constant
  • To test different hypothesis of initial steps of
    the growth

13
Cluster and Nucleation mode growth
14
Aerosol process model UHMA
  • Sectional aerosol dynamic model
  • Suitable for a wide range of applications
  • Special focus on new particle formation and
    growth
  • State-of-the-science particle description
  • Computationally efficient for 3D applications
  • (Korhonen et al.,Atmos. Chem. Phys. 4,
    757-771, 2004)

15
Aerosol process model UHMA
16
(No Transcript)
17
Continuous Measurements
18
Kuvat Miikka Dal Maso
19
  • The dots indicate observation sizes, the
    dashed lines and rectangles indicate regions
    where airborne or ship observations have been
    made. (Kulmala et al, 2004)

20
Barcelona (Heapss) Ausburg (Heapss) Roma
(Heapss) Stocholm (Heapss) Nagpur, India New
Delhi Mace Head (Parforce, Quest) Tenerife (Ace
II) Melbitz (Osoa) Arctic (IAO-96) Antarctic
(Finnarp) Marseil (Bond) Athens (Bond) Hyytiälä
(SMEAR II) Värriö (SMEAR I) Helsinki



21
(No Transcript)
22
(No Transcript)
23
Monthly means averaged over all years 1996
2001
GR for all events (dark blue) GPP (pink) Tair
(light blue) Sum of mean cterp x Rg (green).
24
A cloud droplet activation event at Pallas,
January 11, 2001. In-cloud (upper) and outside
the cloud (lower) size distribution contour plots
(left) and modal concentrations (right)
25
Continental air masses
Below cloud
In cloud
Activated particles
Arctic marine air masses
Two example cases, typical continental air masses
(upper) and typical arctic marine air masses
(lower). On the left the size spectra
out-of-cloud (stars), in-cloud (circles) and the
spectra of activated particles (triangles) (
out-of-cloud in-cloud size spectra) and on the
right the activated fraction in 30 size classes.
26
Average activation spectra for clean marine
(blue) and polluted continental (red) air masses
Komppula et al., 2004
27
Estimated contributions on radiative balance
(Kurten et al., 2003, BER)
  • Boreal Forest
  • 3.4 of Earths Surface (?)
  • Aerosol formation and CCN production
  • globally -0.03 - -1.1 W/m2 (??)
  • GCMs are needed to confirm this
  • Carbon sink
  • globally (similar estimation) - 1.2 W/m2
  • Albedo Change

28
Laboratory Studies
  • Homogeneous nucleation
  • Nucleation inside Clouds
  • Nucleation inside CPC
  • Heterogeneous Nucleation
  • in co-operation with University of Vienna
  • Evaporation/Condesation
  • in co-operation with University of Copenhagen
  • Research Center Julich, Germany
  • University of Vienna

29
Activation / Lab studies
  • Heterogeneous nucleation /Activation studies
    using SANC/CAMS techique (Uni of Vienna)
  • size dependence
  • Binary mixtures Ag, Ammoniumsulphate
  • water n-propanol
  • water n-nonane
  • n-propanol n-nonane

30
Heterogeneous nucleation probability curves for
unary n-nonane vapor on Ag particles
Winkler, Wagner et al. 2004
31
Onset activities for differentparticle
compositions and particle sizes
Winkler, Wagner et al.
32
Summary/ Aerosol Formation
  • In Continental Boundary layer particularly in
    Boreal Forest
  • nucleation sulphuric acid ammonia (water) or
    sulphuric acid di/trimethylamine
  • kinetic and/or ion induced
  • Activation acid clusters will activate due to
    organic vapours
  • growth by oxidation products of mono- and
    sesquiterepenes
  • seasonal variation (particularly growth) related
    photorespiration
  • Clear observed coupling between aerosol
    production and carbon sink

33
Miksi olemme huippuyksikkö
  • Tutkimusideat, innovatiivisuus
  • Moni- ja poikkitieteisyys, laaja yhteistyö
  • HY, IL, KY jne
  • Kansainvälisyys, tunnettavuus
  • Riittävän iso ryhmä, krittinen massa
  • SMEAR ja GAW asemat
  • EU projektit
  • Tulokset -gt Tieteellinen arvostus
  • julkaisut, Nature/Science
  • Väitöskirjat

34
APFE
FCoE
NCoE Aerosols
NCoE Fluxes
NorFa Graduate School
ENoE
35
Team
  • University of Helsinki
  • Hanna Vehkamäki, Kaarle Hämeri, Ullar Rannik,
    Ismo Napari, Pasi P. Aalto, Miikka Dal Maso,
    Genrik Mordas,Michael Boy, Anca Gaman, Ismo K.
    Koponen, Lauri Laakso, Antti Lauri, Tanja Suni,
    Tuukka Petäjä, Anni Reissel, Jaana Bäck, Tuulia
    Hyötyläinen, Marja-Liisa Riekkola, Pertti Hari,
    Timo Vesala, Alex Lushnikov
  • University of Kuopio
  • Kari E.J. Lehtinen, Ari Laaksonen, Jorma
    Joutsensaari
  • Finnish Meteorological Institute
  • Veli-Matti Kerminen, Hannele Korhonen, Jussi
    Paatero, Hannele Hakola, Heikki Lihavainen, Mika
    Komppula, Yrjö Viisanen
  • University of Tartu, Estonia
  • Madis Noppel, Urmas Hörrak, Marko Vana, Hannes
    Tammet, Aadu Mirme
  • University of Stockholm, Sweden
  • E. Douglas Nilsson, Peter Tunveed, H.-C.
    Hansson, Robert Janson
  • National University of Ireland, Galway
  • Colin ODowd
  • Tampere University of Technology
  • Jyrki M. Mäkelä
  • MPI Heidelberg, Germany
  • Frank Arnold, Markus Hanke
  • University of Copenhagen, Denmark
  • Merete Bilde, Birgitta Svenningsson
  • University of Oslo, Norway

36
  • FUTURE ACTIVITY
  • iLEAPSIntegrated Land Ecosystem Atmosphere
    Processes Study
  • Addressing the following key questions
  • How do interacting physical, chemical, and
    biological processes transport and transform
    energy and materials through the land-atmosphere
    system?
  • What are the implications for the dynamics of the
    Earth System?
  • How did the terrestrial ecosystem-atmosphere
    system function under pre-industrial conditions,
    and how are current and past human activities
    influencing it (and vice versa)?
  • To what extent does the vegetation optimise its
    physical and chemical environment on various
    temporal and spatial scales?

37
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com