RF Triangulation: Indoor/Outdoor Location Finding Chip 18-525 Giovanni Fonseca David Fu Amir Ghiti Stephen Roos Design Manager: Myron Kwai - PowerPoint PPT Presentation

About This Presentation
Title:

RF Triangulation: Indoor/Outdoor Location Finding Chip 18-525 Giovanni Fonseca David Fu Amir Ghiti Stephen Roos Design Manager: Myron Kwai

Description:

Use existing 802.11 wireless signals to calculate one's location when GPS is not ... watches, cell phones or shopping carts for locations ranging from large theme ... – PowerPoint PPT presentation

Number of Views:70
Avg rating:3.0/5.0
Slides: 25
Provided by: davi165
Category:

less

Transcript and Presenter's Notes

Title: RF Triangulation: Indoor/Outdoor Location Finding Chip 18-525 Giovanni Fonseca David Fu Amir Ghiti Stephen Roos Design Manager: Myron Kwai


1
RF Triangulation Indoor/Outdoor Location
Finding Chip 18-525 Giovanni FonsecaDavid
FuAmir GhitiStephen RoosDesign Manager Myron
Kwai
  • Overall Project Objective
  • Design a Radio-Frequency indoor/outdoor
    navigation system,
  • utilizing the existing wireless infrastructure.

2
Project Description
65.7K
  • Use existing 802.11 wireless signals to calculate
    ones location when GPS is not available.
  • The RF Triangulator will use existing
    infrastructure to act as an indoor/outdoor local
    positioning system
  • Using distances calculated from signal to noise
    ratios from 3 or more wireless access points it
    will be possible to determine ones coordinates
    to within 1 meter.

3
Motivation System Integration
  • It will be able to quickly provide your current
    location and aid in path finding.
  • Can be used by outdoor venues such as amusement
    parks, tourist areas or college campuses to
    provide interesting information.
  • To be used indoors to privately locate resources
    or navigate unfamiliar buildings
  • Our chip can be integrated into handheld
    computers, watches, cell phones or shopping carts
    for locations ranging from large theme parks to
    office buildings.

65.7K
4
Our Vision
65.7K
5
Triangulation Algorithm
  • Our chip will solve for the simultaneous solution
    of 3 circle equations done by the Calc module

http//geology.csupomona.edu/drjessey/class/Gsc101
/triangulation.gif
65.7K
6
Calculations for Calc
65.7K
7
Other Components
65.7K
  • Top Three Tracks and IDs best (closest) three
    signals utilizing distance and access point MAC
    address. Calculates moving average of signal
    distance to reduce noise. Caches four recently
    seen signals.
  • SRAM Can be loaded with local access point
    locations and updated as you move.

8
Dataflow
65.7K
9
Design Process
  • Split design into 4 pieces lookup table, top
    three, calc and the fpu modules
  • Original specifications for the chip included
    16-bit floating point calculations and a waypoint
    finder utilizing a trig lookup in RAM that could
    show the direction to your desired location.
  • Size and complexity constraints reduced floating
    point numbers to 12-bits and eliminated waypoint
    calculation
  • 1KB SRAM 48,000 transistors gt1800bit SRAM
  • Reduced transistors by receiving distance as an
    input instead of calculating it.

65.7K
10
Floorplan Evolution
65.7K
11
Floorplan Evolution
Top3
lookup
CALC
65.7K
12
Floorplan Evolution
65.7K
Top3
CALC
lookup
13
Floorplan Evolution
65.7K
Top3
CALC
lookup
14
Floorplan Evolution
Top3
CALC
lookup
65.7K
15
Lookup Verification
22 r1, w0, rst1, mI000000000000, xin 9,
yin 9, mOxxxxxxxxxxxx, x x, y x, f0, d0,
o0, clk0 23 r1, w0, rst1, mI000000000000,
xin 9, yin 9, mO000000000000, x 0, y 0, f1,
d1, o0, clk1 24 r0, w0, rst1,
mI000000000000, xin 9, yin 9, mO000000000000,
x 0, y 0, f1, d1, o0, clk0 25 r0, w0,
rst1, mI000000000000, xin 9, yin 9,
mO000000000000, x 0, y 0, f0, d1, o0, clk1
26 r1, w0, rst1, mI000000000005, xin 9,
yin 9, mO000000000000, x 0, y 0, f0, d1,
o0, clk0 27 r1, w0, rst1, mI000000000005,
xin 9, yin 9, mO000000000000, x 0, y 0, f0,
d0, o0, clk1 28 r1, w0, rst1,
mI000000000005, xin 9, yin 9, mO000000000000,
x 0, y 0, f0, d0, o0, clk0 59 r0, w1,
rst1, mI000000000009, xin 9, yin 9,
mO000000000009, x 9, y 9, f0, d0, o0, clk1
60 r1, w0, rst1, mI000000000005, xin 9,
yin 9, mO000000000009, x 9, y 9, f0, d0,
o0, clk0 61 r1, w0, rst1, mI000000000005,
xin 9, yin 9, mO000000000005, x 9, y 9, f1,
d1, o0, clk1 62 r0, w0, rst1,
mI000000000005, xin 9, yin 9, mO000000000005,
x 9, y 9, f1, d1, o0, clk0 63 r0, w0,
rst1, mI000000000005, xin 9, yin 9,
mO000000000005, x 9, y 9, f0, d1, o0, clk1
64 r1, w0, rst1, mI000000000017, xin 9,
yin 9, mO000000000005, x 9, y 9, f0, d1,
o0, clk0 65 r1, w0, rst1, mI000000000017,
xin 9, yin 9, mO000000000005, x 9, y 9, f0,
d0, o0, clk1
65.7K
Rise Time 78.2 ps Fall Time 66.1ps
16
Top Three Verification
65.7K
  • OP UPDATE _at_ t 260
  • INPUTS ID 0000aaaabbbb SNRr 80 clkrst
    (11)
  • LOOKUP ID 0000aaaabbbb (X,Y) ( 20, 30)
    (SNRt,SNRr) ( 200, 80)
  • NEWROW ID 0000aaaabbbb (X,Y) ( 0, 0)
    (SNRt,SNRr) ( 0, 80)
  • ROW A ID 000000000000 (X,Y) ( 0, 0)
    (SNRt,SNRr) ( 0, 0) R(1)
  • ROW B ID 0000aaaabbbb (X,Y) ( 20, 30)
    (SNRt,SNRr) ( 200, 300) R(1)
  • ROW C ID 000000000000 (X,Y) ( 0, 0)
    (SNRt,SNRr) ( 0, 0) R(0)
  • SAMPLA Sample 1 0 Sample 2 0
    Sample 3 0 Sample 4 0 Average 300
  • SAMPLB Sample 1 300 Sample 2 300
    Sample 3 300 Sample 4 300 Average 300
  • SAMPLC Sample 1 0 Sample 2 0
    Sample 3 0 Sample 4 0 Average 300

17
Calc Verification
  • gt./fpu_optest -md -single 3009 5
  • --Input
  • A 101111000001 (3009)
  • B 000000000101 (5)
  • --Results
  • prod 0000 0000 0001 (1)
  • quo 0010 0101 1001 (601)
  • rem 0000 0000 0100 (4)
  • Done

65.7K
18
Issues Encountered
  • Slow or incomplete rise times from lack of
    buffering especially in SRAM
  • Triangulation algorithm conversion to hardware
    was difficult
  • Registers became larger than expected
  • Underestimated bus sizes especially in top three
    with several 48 bit buses

65.7K
65.7K
65.7K
65.7K
65.7K
19
Pin Specifications
  • PIN COUNT
  • Input clk, Output 12-bit X,
    reset, 12-bit Y
  • write, 24 output pins 48-bit MAC,
  • 12-bit X, InOut Vdd!, Gnd!
  • 12-bit Y,
  • 12-bit Distance
  • 87 input pins Total Pins
    115

65.7K
20
Part Specifications
  • Top Three 29,322 trans.
  • 3 x FPU Add/Sub Units 4500 trans.
  • Registers 16104 trans.
  • Muxes Computation 8718 trans
  • Area 602x512 u2
  • Density .095 trans/u2
  • FPU Adder 2,160 trans.
  • Prenorm 866 trans.
  • Postnorm 988 trans.
  • Adder 306 trans.
  • Area 136x76 u2
  • Density .21 trans/u2
  • FPU Mult/Divide 5,601 trans.
  • Prenorm 1032 trans.
  • Postnorm 1527 trans
  • Mult/Divide 3042
  • Area 180x195 u2
  • Lookup 15,018 trans.
  • Control Registers Muxes 2094 trans.
  • Control Logic 163 trans.
  • Computation 611 trans.
  • SRAM 12,150 trans.
  • Area 210x240 u2
  • Density .3 trans/u2
  • Calc 21,379 trans.
  • 2 x FPU Add/Sub Unit 2160 trans.
  • 1 x FPU Mult/Div Unit 5601 trans.
  • 1 x Shifter 206 trans.
  • 1 x Comparator 282 transistors.
  • FSM Logic 1106 transistors
  • 25 x 12-bit Registers 6600 trans. total
  • 8-1,6-1,4-1,2-1 Mux Sets 3264
  • Area 200x720400x200 u2
  • Density .08 trans/u2

65.7K
21
Chip Specifications
65.7K
  • Total Chip 65,719 transistors
  • Area 712x871 u2
  • Density 0.106 trans/u2
  • Aspect Ratio 1.13
  • Speed 100Mhz

22
Layout Masks
23
Layout Masks
24
Conclusion
  • A good floorplan is essential for a good layout
  • To ensure ExtractedRC results are ok buffering
    and simulations on schematics are key
  • Group communication is very important

Stay within design limits
Write a Comment
User Comments (0)
About PowerShow.com