Fitting atomic models into EM map Alexei Vagin Alexei Vaguine alternative spelling York Structural B - PowerPoint PPT Presentation

1 / 62
About This Presentation
Title:

Fitting atomic models into EM map Alexei Vagin Alexei Vaguine alternative spelling York Structural B

Description:

Optical Resolution ( by sfcheck ) Weights for high resolution data and similarity ... Weight of low resolution grows. Low high. Model Similarity. 0 .1 0.2 0.3 0.4 0.5 ... – PowerPoint PPT presentation

Number of Views:70
Avg rating:3.0/5.0
Slides: 63
Provided by: Ale7156
Category:

less

Transcript and Presenter's Notes

Title: Fitting atomic models into EM map Alexei Vagin Alexei Vaguine alternative spelling York Structural B


1
Fitting atomic models into EM map Alexei
Vagin( Alexei Vaguine alternative spelling
)York Structural Biology LaboratoryUniversity
of York
2
lt-- models
result
EM
3
Molecular replacement
put homologous model into crystal with unknown
structure or Atomic Model --gt EM map
1) 6 - dimensional search check all
orientations and positions
  • 3-d 3-d search
  • orientations positions
  • Conventional Molecular Replacement

4
Molecular replacement programs and systems
  • Programs Systems
  • Amore MrBump
  • MOLREP Phenix
  • QS BALBES
  • PHASER
    Many others
  • EPMR
  • CNS
  • URO

5
Functions of molecular replacement
  • Cross Rotation function
  • Self Rotation function
  • Translation function
  • Phased Translation function
  • Fast Packing function

6
Cross Rotation Function
map
model
Patterson
Pmod
Pobs
RF
RF(?) ? Pobs(r) R? Pmod(r) dr
R? - rotation operator
?
7
Optimal radius of integration
map
model
B
A
Vinter
AB
BA
Diametre of model
8
Self Rotation Function
map
RF(?) ? Pobs(r) R? Pobs(r) dr
a
RF
a
?
0
90
a
9
Self Rotation Function
Space group P21 one tetramer
10
Translation Function
  • TF(s) ? Pobs(r) Pcalc(s,r) dr

s - vector of translation
Phased Translation Function
PTF(s) ? ?obs(r) ?calc(s,r) dr
11
Fast Packing Function
Estimation of overlap

Packing function
K j
12
Questions
How to use X-ray data
  • Maximum resolution limit ?
  • Minimal resolution limit ?
  • Weighting scheme ?

13
Short introduction toFourier Transformation
Operators
addition
? F ?
addition
product
convolution
? F ?
14
Functions
Real function
Complex function
? F ?
? F ?
Gaussian
Gaussian
A
1/A
? F ?
Grid
Grid
1/A
A
? F ?
Step function
Interference function
A
1/A
15
Crystal and Structure Factors
Reciprocal space
? F ?
Real space
Fobs(s)
s
1/A
A
Product
? F ?
Convolution
Fh
h
16
Real space
? F ?
Reciprocal space
Map ?(r)
F(s) structure factors
? F ?
? F ?
product
convolution
F(s) F(s) I(s)
inensities
? F ?
Patterson P(r)
17
High resolution data
  • High resolution limit from Optical resolution
  • Weights for high resolution data

18
Optical resolution
Reciprocal space
Real space
? F ?
Fobs(s)
?
atm
?
res
resmax
?
?
res 0.356 resmax
Single peak
2 atm2 res2
?
?
?
?
Optres 2
19
Optical resolution from origin peak of Patterson
Patterson
Real space
?
patt
atm
?
?
Optres 2 atm
?
?
?
atm2 ( patt2 res2 )/2
20
Optical Resolution Å
?
Optres 2
2 ( atm2 res2 ) )/2
?
?
?
Å
5
10
Resolution
Optimal high resolution limit
21
Optical Resolution ( by sfcheck )
22
Weights for high resolution data and similarity
23
1
2
Fobs(s)
Map
2?
Model
1
2
1-2
2-1
2-2
1-1
PTF
1
2
Map (blurred)
Fobs(s)
Exp(-Bs2)
?
B1/4 2 2
?
1-2
2-1
1-1 2-2
PTF
24
Low resolution data
  • Weights for low resolution data and
  • size of model

25
Soft minimal resolution cut-off
Real space
Reciprocal space
? F ?
Fobs(s)
s
Radmodel
Exp(-Bs2)
Exp(-r2/2 2)
?
B1/4 2 2
?
?
?
Radmodel / 6
product Exp(-Bs2) Fobs
convolution
subtraction
(1-exp(-Bs2) )Fobs
26
Weighting scheme
Fused (1 - exp(-Boffs2) ) Fobs
exp(-Bs2)
1 - exp(-Boffs2)
1
exp(-Bs2)
s
1/Rmin
1/Rmax
Rmin v2Boff 2 model model
Radmodel / 6
?
?
B1/4 2 2
?
?
?
Model similarity
Rmax v2B
Rmin Radmodel
27
Weighting scheme
Two filters in Image
processing Gaussian highpass filter
Gaussian lowpass filter
exp(-Bs2)
Fused (1 - exp(-Boffs2) ) Fobs
We can consider this weighting scheme as an
approximation to the likelihood approach
28
Information in X-ray and Model must overlap
1
s
1/Rmin 1/Rmax
(fom model similarity)
(fom model size)
1/Resmax_used (fom opt. resolution)
1/Resmin_X-ray
1/Resmax_X-ray
29
Can we find solution?
Weight of low resolution grows Low
high Model
Similarity 0 .1 0.2 0.3 0.4
0.5
Very likely
Weight of high resolution grows Low
high Model size 0.5
0.4 0.3 0.2 0.1
Very unlikely
30
What do you need to do before MR
  • 1) Examine the data
  • 2) Examine the model

31
Examine the data (e.g by sfcheck)
  • Completeness of data
  • signal-to-noise
  • Anisotropy (make correction?)
  • Pseudo-translation
  • Twinning
  • Resolution
  • Keep in mind for EM map
  • Map scale factor
  • Handedness of map

32
Examine the model
  • Look at the molecular shape and flexibility
  • Check the sequence similarity
  • Estimate the model size
  • Choose the method of the model correction
  • Estimate number of copies

33
Example model ? EM
6-mer hemocyanin
Ulrich Meissner et al. J.Mol.Biol. (2003) 325,
99-109
34
EM map
35
EM map (sfcheck 1)
From grid
36
EM map (sfcheck 2)
9A
37
Model
38
Rotation Function
Radius of int 50.72 Resmin,Resmax 212.00
8.96 theta phi chi Rf/sigma
Sol_ 1 52.25 -110.27 166.40 3.98 Sol_
2 75.76 -170.07 108.38 3.98 Sol_ 3
117.46 129.68 124.90 3.97 Sol_ 4 66.32
11.00 85.03 3.97 Sol_ 5 38.59
71.16 164.30 3.97 Sol_ 6 129.34 -48.80
105.84 3.97 Sol_ 7 123.98 -46.97
121.08 3.37 Sol_ 8 75.79 13.02 96.32
3.37 Sol_ 9 125.43 134.59 116.16 3.37
Sol_ 10 51.15 47.70 155.97 3.37 Sol_ 11
44.47 -105.43 161.40 3.37 Sol_ 12
47.16 73.03 159.71 3.35 Sol_ 13 122.50
-72.37 129.46 3.35
39
Translation Function 1
Sol_--- phased translation function ---Sol_
Resmin,Resmax 212.00 8.96S_ RF TF
tx ty tz ScoreS___2__1 1
0.405 0.362 0.600 0.189 S___4__1 2
0.435 0.636 0.601 0.179 S___1__1 3
0.659 0.473 0.600 0.179 S___5__1 4
0.595 0.361 0.381 0.177 S___3__1 5
0.565 0.636 0.380 0.174 S___6__1 6
0.341 0.472 0.381 0.169 S___7__1 7
0.569 0.630 0.359 0.081S___9__1 8 0.432
0.630 0.617 0.077. . . . . . . . . .
Number of monomers in fixed model 1
40
Translation Function 2
S_ RF TF tx ty tz
Score S___1__1 1 0.341 0.473 0.381
0.260 S___4__1 2 0.435 0.636 0.601
0.260 S___3__1 3 0.659 0.473 0.600
0.257 S___5__1 4 0.565 0.636 0.380
0.255 S___6__1 5 0.594 0.361 0.381
0.249 S___7__1 6 0.569 0.630 0.359
0.186S___9__1 7 0.655 0.478 0.621
0.185S___8__1 8 0.434 0.631 0.616
0.184 . . . . . . . Number of monomers in
fixed model 2
41
Translation Function (final)
S_ RF TF tx ty tz
Score S___6__1 1 0.594 0.361 0.380
0.441 S___8__1 2 0.588 0.362 0.362
0.421S___9__1 3 0.629 0.281 0.328
0.421 . . . . . . . . Number of monomers in
the model 6
For mirror map
Rotation function the same
Translation function (1 step)
correct peaks
incorrect Score 0.060 - 0.057
0.068
42
Result
43
We can have a problem with RF if completeness of
model is low
Alternative approach
1. To find the position 2. To find the
orientation
44
Spherically Averaged Phased Translation Function
(SAPTF)
radial distribution
Map
? (r)
? m(r)
? s(r)
? m(r)
s
Model
SAPTF(s) ? ?s(r) ?m(r) r2 dr
45
SAPTF as Fourier series
By expanding SAPTF into spherical harmonics it is
possible to represent it as a Fourier series
SAPTF(s) ? ?s(r) ?m(r) r2 dr
?h Ah exp(2 i hs)
?
Ah ?n Fhc00n(R) j0(2 Ra) b00n
?
46
Algorithm
1. Find position Spherically averaged
phased translation function 2. Find
orientation Local phased rotation
function 3. Check and refine position
Phased translation function
47
Example 2
13 subunits of Portal protein of
bacteriophage SPP1
Fred Antson at al. University of York
48
EM map
49
EM map (sfcheck 1)
from grid
50
EM map (sfcheck 2)
8A
51
model
52
(No Transcript)
53
SAPTF
54
Spherically Average Phased Translation
Function
Correct peak numbers 496, 511, 515, . . .
Phased Rotation Function
Correct peak numbers 40, 59, 68, 85, 86, 90,
107, 111, 112
Phased Translation Function
correct peaks
incorrect Score 0.092 - 0.083
0.038
Final number of monomers 9
55
Result with 9 monomers
56
Spherically Average Phased Translation
Function with 13-fold symmetry
Correct peak number 36
(peaks were selected according 13-fold NCS)
Phased Rotation Function
Correct peak number 8
Phased Translation Function
correct peak
incorrect Score 0.083
0.042
Final number of monomers 13
57
Result 1
58
Result 2
59
Result 3
60
Rigid Body Refinement
Additional possibilities
1 In reciprocal space with phases
2 multi-domain refinement
3 use NC Symmetry as constraint
61
Acknowledgments
  • Gleb Bourenkov MPG-DESY, Hamburg . . . . . . .
    .1st friend
  • Sasha Popov EMBL, Hamburg . . . . . . . . . . .
    . . . .2nd friend
  • Misha Isupov University of Exeter . . . . . . .
    . . . . .3rd friend
  • Andrey Lebedev YSBL, York . . . . . . . . . . .
    . . . .consultant
  • Garib Murshudov YSBL, York. . . . . . . . . . .
    . . . . . .director
  • BBSRC, CCP4 . . . . . . . . . . . . . . . . . . .
    . . . . . . . . . .sponsors

62
Thank you very much
http//www.ysbl.york.ac.uk/alexei/
also program is available from
CCP4
Write a Comment
User Comments (0)
About PowerShow.com