Interconnect%20Complexity-Aware%20FPGA%20Placement%20Using%20Rent - PowerPoint PPT Presentation

About This Presentation
Title:

Interconnect%20Complexity-Aware%20FPGA%20Placement%20Using%20Rent

Description:

University of California, Santa Barbara. 9/7/00. 2. Outline. Motivation. Rent's Parameter ... 80-90% of die area = interconnects. increased programmability ... – PowerPoint PPT presentation

Number of Views:35
Avg rating:3.0/5.0
Slides: 23
Provided by: arindamm
Category:

less

Transcript and Presenter's Notes

Title: Interconnect%20Complexity-Aware%20FPGA%20Placement%20Using%20Rent


1
Interconnect Complexity-Aware FPGA Placement
Using Rents Rule
  • G. Parthasarathy
  • Malgorzata Marek-Sadowska
  • Arindam Mukherjee
  • Amit Singh
  • University of California, Santa Barbara

2
Outline
  • Motivation
  • Rents Parameter
  • Analysis
  • New Placement Algorithm
  • Results
  • Conclusions
  • Future Work

3
Motivation
  • 80-90 of die area interconnects
  • increased programmability
  • routing resource utilization (RRU) is low
  • 100 logic utilization
  • unused LUTs -gt better RRU
  • maybe at the cost of increased area?
  • Maybe not!
  • interconnect complexity guided placement - Rents
    parameter

4
Rents Parameter
  • Common measure for Interconnect Complexity
  • Nio K NgP
  • Nio Number of IO pins/terminals external to the
    logic partition
  • K - Average number of interconnections per LUT
  • Ng Number of LUTs in a logic partition
  • p Rents parameter after E.F.Rent
  • E.F.Rent,1960
  • Landman, Russo, 1971

5
Local Rents parameter Pld
  • Complexity Varies across design.
  • Solution Use local interconnect complexity
    measure based in interconnect length
    distributions. (Van Marck et al.,95)
  • Reduces to Landmans Rents exponent for uniform
    design at the top level

6
Rents Parameter
  • Van Marck, Stroobandt, Campenhout, 1995
  • p D(log Ni) / D(log Li)
  • p Rents parameter
  • Li - length of a net
  • Ni - number of nets of length Li

7
Rents Parameter
logNi
logLi
8
Analysis
  • Consists of LUTs, connection boxes and
    switch-boxes
  • Regular 2-D mesh array of unit tiles

FPGA Architecture
9
FPGA Fabric Min-Size-Up
  • Definitions
  • Pa Rents parameter for Architecture
  • Pd Rents parameter for Design
  • Case 1 Pd lt Pa
  • Design routable. Try to get best placement.
  • Case 2 Pd gt Pa
  • Design Un-routable. Need more resources.
  • Solution Increase FPGA fabric size by scaling
    factor C

Pa


Pd
)
K(C.N
K N
Nio
g
g
-
Pa
Pd

N
C
Pd
g
10
New Placement Algorithm
  • Simulated Annealing - VPR
  • scale-up fabric by C
  • modify VPRs existing Cost Function
  • pld - pla used as scaling factor for
    bounding-box based cost function
  • uniform distribution of interconnect complexity

11
Place-and-Route CAD Flow
  • Generate Benchmarks
  • Known Pd
  • Uniform Distribution
  • Map to Net-list
  • Place-and-route
  • VPR
  • MVPR
  • Compare

12
Results - Benchmarks
gnl generated ckts
p1d p2d p3d p4d p5d p6d
p6d
p5d
p4d
p1d
p2d
p3d
random ckts - ISCAS benchmarks
13
Rents Parameter for Architecture1
Results
  • Segmentation 1, channel width 7, Pa 0.62

14
Rents parameter for Architecture2
  • Segmentation 2, channel width 7, Pa 0.64

15
Routing Utilization for seg 1
  • MVPR produces better routing utilization
  • 15-25 better

16
Routing Utilization for seg 12
  • MVPR produces better routing utilization
  • 10-15 better

17
Routing Utilization for seg 2
  • MVPR produces only minimally better routing
    utilization
  • 1-5 better

18
Routing Overhead Results (MVPR vs VPR) seg 1
  • results follow trend for changes in architecture

19
CLB Area Utilization (MVPR v/s VPR) seg 1
  • logic area utilization falls with increasing Pd
  • results follow trend for changes in architecture

20
  • MVPR over VPR for gnl generated ckts
  • 25 higher RRU
  • 10-15 lower Area

21
Minimum Tracks Required on ISCAS Ckts
22
  • MVPR over VPR for ISCAS ckts
  • same track utilization
  • 5 lower average wire length
  • 2-5 higher RRU
  • 10-15 higher Area

23
Conclusions
  • Pluses
  • New Cost Function
  • Minimum size fabric derived for Pd gt Pa
  • Min-Area lt-gt Max-RRU
  • Minuses
  • Errors in the estimation of Pd and Pa
  • second-order effects
  • Non-uniform interconnect complexities

24
Future Work
  • Modifying MVPR
  • non-uniform interconnect complexity
  • timing/power-dissipation and complexity-aware
    FPGA placement
  • correlating track segmentation with accurate
    estimation of Rents parameter
Write a Comment
User Comments (0)
About PowerShow.com