Efficient Parallel Simulation of Fluid Dynamics on Cartesian Grids - PowerPoint PPT Presentation

About This Presentation
Title:

Efficient Parallel Simulation of Fluid Dynamics on Cartesian Grids

Description:

FEM: Efficient Parallel Simulation of Fluid Dynamics on Cartesian Grids ... FEM-basis: u-v-coupled, piecewise linear. correct velocity interpolation ... – PowerPoint PPT presentation

Number of Views:15
Avg rating:3.0/5.0
Slides: 18
Provided by: SEC1131
Category:

less

Transcript and Presenter's Notes

Title: Efficient Parallel Simulation of Fluid Dynamics on Cartesian Grids


1
Efficient Parallel Simulation of Fluid Dynamics
on Cartesian Grids
  • Miriam Mehl
  • Ionel Muntean, Tobias Neckel, Tobias Weinzierl
  • Computer Science
  • TU München

2
Why Cartesian Grids?
numerical efficiency (adaptivity, multigrid)
hardware efficiency ??? (not automat.)
flexibility (adaptivity, marker and cell)
accuracy ??? (not automat.)
physical correctness ??? (not automat.)
3
Numerical Efficiency
  • hierarchically structured Cartesian grids
  • arbitrarily local adaptivity
  • full approximation schemes
  • efficient multigrid methods

4
Hardware Efficiency
½ ½ -1
  • cell-oriented operator evaluation
  • constant difference stencils
  • no neighbour relations
  • low storage

5
Hardware Efficiency
  • Peano curve
  • processing order of grid cells
  • time locality of data access

6
Hardware Efficiency
  • stacks as data structures
  • spatial locality of data access

7
Hardware Efficiency
  • cache-misses 110 of minimum
  • runtime 5 times DiMe (regular grid)
  • 3D Poisson
  • sphere, adaptive
  • 23,118,848dofs

processes Speedup
4 3.73
8 6.85
16 12.93
8
Flexibility
  • geometric adaptivity
  • Eulerian approach (marker-and-cell)
  • complicated changing geometries

9
Accuracy
  • geometric adaptivity
  • cutting-cell methods
  • hierarchical operator generation
  • second order accuracy in geometry

10
Physical Correctness
  • Verstappen, 2001
  • symmetry requirements
  • energy and momentum conservation
  • FEM

11
Physical Correctness
  • FEM-basis u-v-coupled, piecewise linear
  • correct velocity interpolation
  • dynamical adaptivity, coupling surface

12
Why Cartesian Grids?
numerical efficiency (adaptivity, multigrid)
hardware efficiency (space-filling curves, stacks)
flexibility (adaptivity, marker and cell)
accuracy (adapt., cutting-cell, hier. op. Gen.)
physical correctness (divergence preserv. FE basis)
13
Numerical Results
  • Regular grid code F3F
  • symmetry preserving FV discretisation
  • fully parallel
  • full 3D functionality
  • platforms up to now
  • HLRB2 (SGI Altix 4700)
  • TU München Infinicluster (128 CPU Opteron)
  • Universität Stutgart Mozart (128 CPU Xeon
    cluster)

14
Numerical Results
15
Numerical Results
  • Adaptive grid code Peano
  • 2D Navier-Stokes
  • parallel Poisson
  • platforms up to now
  • HLRB2 (SGI Altix 4700)
  • TU München Infinicluster (128 CPU Opteron)
  • PC cluster

16
Numerical Results
  • Free channel flow Re1111
  • in preparation to DNS
  • boundary layer adaptively refined

17
Conclusion Outlook
  • appropriateness of our approach
  • concept for adaptive grids Navier-Stokes
  • Cartesian grids applications
  • next steps
  • fully functional 3D parallel adaptive NS-solver
  • refinement criteria for turbulent boundary layers
  • runtime optimisation on supercomputers
Write a Comment
User Comments (0)
About PowerShow.com