Axiomatic set theory - PowerPoint PPT Presentation

1 / 17
About This Presentation
Title:

Axiomatic set theory

Description:

Axiomatic set theory – PowerPoint PPT presentation

Number of Views:93
Avg rating:3.0/5.0
Slides: 18
Provided by: Jou9
Category:
Tags: axiomatic | limn | set | theory

less

Transcript and Presenter's Notes

Title: Axiomatic set theory


1
Axiomatic set theory
  • Jouko Väänänen

2
Equivalent definition of sum
  • ?0 ?
  • ?(?1) (??)1
  • ? ? lim?lt?(??)

3
Equivalent definition of product
  • ??0 0
  • ??(?1) (???)?
  • ??? lim?lt?(???)

4
Definition of exponentiation
  • ?0 1
  • ??1 ????
  • ?? lim?lt?(??)

5
Continuous functions on ordinals
  • fOn?On is continuous if
  • f(?)lim?lt? f(?)
  • for all limit ordinals ?.
  • f(?)?? is continuous
  • ? ? lim?lt?(??)
  • f(?) ? ? ? is continuous
  • ??? lim?lt?(???)
  • f(?)?? is continuous
  • ?? lim?lt?(??)

6
Order-preserving functions on ordinals
  • fOn?On is order-preserving if
  • ?lt? ?f(?)ltf(?)
  • for all ? and ?
  • f(?)? ? is order-preserving
  • ??? ? ??? ??
  • f(?)? ? ? is order-preserving
  • ??? ? ??? ? ???
  • f(?)?? is order-preserving
  • ??? ? ?? ? ??

7
Normal functions on ordinals
  • fOn?On is normal if it is continuous and
    order-preserving
  • f(?)?? is normal
  • f(?)? ? ? is normal
  • f(?)?? is normal

8
Exercise
  • If fOn?On is normal, then
  • f(lim ?lt? ??) lim?lt? f(??)
  • for all increasing sequences (??)?lt?.

9
Fixed-point Theorem
  • Every normal function has a fixed-point ?f(?).
  • ?00
  • ?n1f(?n) ??n
  • ?limn ?n
  • f(?)f(limn ?n) limn f(?n)
  • limn ?n1?

10
Many fixed-points
  • Every normal function has fixed-points
    arbitrarily high
  • Given ?
  • ?0 ?
  • ?n1f(?n)? ?
  • ?limn ?n ? ?
  • f(?)f(limn ?n) limn f(?n)
  • limn ?n1?

11
Fixed points of arithmetic functions
  • For every ? there is ? such that ???.
  • E.g. ????
  • For every ? there is ? such that ????.
  • E.g. ???
  • For every ? there is ? such that ???.
  • E.g. there are ? such that ???

12
Simultaneous fixed points
  • Suppose f and g are normal. Then there is ? such
    that ?f(?) and ?g(?).
  • ?00
  • ?2n1f(?2n)??2n
  • ?2n2g(?2n1) ??2n1
  • ?limn ?n
  • f(?)f(limn ?2n) limn f(?2n)
  • limn ?2n1?
  • g(?)g(limn ?2n1) limn g(?2n1)
  • limn ?2n2?

13
Ordinal substraction
  • For all ? and ? such that ?lt? there is a unique ?
    such that ???

?
?
?
14
More formal proof
  • Let ? be the least ? such that ??gt?.
  • Case 1 ? is a limit ordinal. So ???? for all
    ?lt?. But then ??lim?lt? ?? ??lt? ????, that
    is, ????, a contradiction.
  • Case 2 ? is a successor ordinal ?1. Since ?lt?,
    ????. But if ??lt?, then ????, a contradiction.
    So ???.
  • Uniqueness by the Cancellation Law.

15
Properties of exponentiation
  • ????????
  • (??)?????

16
Proof of ????????
  • ????0 ???1?? ??0
  • ?????1 ??????? ????? ?(??)1??(?1)
  • ????? ???lim?lt?(??) lim?lt? ????? lim?lt? ???
  • Claim lim?lt? ??? lim?lt?? ?? (???).
  • If ?lt?, then ??lt ??, so ???? ???.
  • Suppose ?lt??. If ???, then ??????lim?lt? ???.
  • Assume then ?lt?, e.g. ? ??. Then ?lt?. Now ??
    ??? ? lim?lt? ???.

17
Limit ordinals are divisible by ?
  • If ? is a limit ordinal, then ???? for some ?.
  • Proof Let ? be the smallest ? such that ?lt???
  • Case 1 ? is a limit ordinal. If ?lt?, then ?????.
    Hence ???lim?lt??????, a contradiction.
  • Case 2 ? ?1. So ?????. If ???lt?, then ???
    ??(?1) ??????, since ? is a limit ordinal!
    This is a contradiction. Hence in fact ????. QED
Write a Comment
User Comments (0)
About PowerShow.com