OnLine Locomotion Synthesis for Virtual Humans - PowerPoint PPT Presentation

1 / 102
About This Presentation
Title:

OnLine Locomotion Synthesis for Virtual Humans

Description:

On-Line Locomotion Synthesis for Virtual Humans. Pascal Glardon, Ph.D. candidate. EPFL VRLab ... Type of locomotion. Speed / jump length. Split in cycles ... – PowerPoint PPT presentation

Number of Views:71
Avg rating:3.0/5.0
Slides: 103
Provided by: pascalg
Category:

less

Transcript and Presenter's Notes

Title: OnLine Locomotion Synthesis for Virtual Humans


1
On-Line Locomotion Synthesis for Virtual Humans
Ph.D. thesis defense
  • Pascal Glardon, Ph.D. candidate
  • EPFL VRLab

2
Contents
  • Introduction
  • Related Work
  • Motion Modeling
  • Motion Correction
  • Adaptive Motion Control
  • Conclusion

3
1. Introduction
  • Why virtual human animation?
  • Movies and video games
  • Locomotion and jump

4
1. Introduction
  • Why virtual human animation?
  • Movies and video games
  • Locomotion and jump
  • How to animate?
  • Key-frame
  • Motion capture

5
1. Introduction
  • General objectives
  • Versatile (high-level parameters)
  • Proactive
  • Motion realism
  • On-line
  • Genericity

6
1. Introduction
  • Approach

7
1. Introduction
  • Approach

8
1. Introduction
  • Approach

9
1. Introduction
  • Approach

10
Contents
  • Introduction
  • Related Work
  • Motion Modeling
  • Motion Correction
  • Adaptive Motion Control
  • Conclusion

11
2. Related work
  • Hand-driven method keyframe
  • Model-driven method kinematics, physics
  • Data-driven method motion capture

12
2. Related work
  • Data-driven method

Park02
Rose98
13
Contents
  • Introduction
  • Related Work
  • Motion Modeling
  • Motion Correction
  • Adaptive Motion Control
  • Conclusion

14
3. Motion Modeling
  • Approach

15
3. Motion Modeling
  • Data acquisition and processing
  • Optical motion capture
  • Locomotion (treadmill) / Jump
  • Parameter variation
  • Personification
  • Type of locomotion
  • Speed / jump length
  • Split in cycles (motion unit)
  • Joint angle space (26 joints, 40 DOFs)

Data
16
3. Motion Modeling
  • PCA algorithm
  • Each dimension most variance

Data
PCA
2 PC
1 PC
17
3. Motion Modeling
  • PCA algorithm
  • Each dimension most variance
  • Dimension reduction (real-time)

Data
PCA
2 PC
1 PC
18
3. Motion Modeling
  • PCA algorithm
  • Each dimension most variance
  • Dimension reduction (real-time)
  • PCA on motion data
  • Motion matrix M
  • Column normalized motion unit ?i

Data
PCA
19
3. Motion Modeling
  • PCA algorithm
  • Each dimension most variance
  • Dimension reduction (real-time)
  • PCA on motion data
  • Motion matrix M
  • Analysis to draw laws for motion modeling

Data
PCA
20
3. Motion Modeling
  • Hierarchical PCA
  • Separate high-level parametersfor extrapolation

Data
PCA
Rose98Park02
Our method
21
3. Motion Modeling
  • Hierarchical PCA
  • Separate high-level parametersfor extrapolation
  • Efficient motion generation

Data
PCA
22
3. Motion Modeling
  • Hierarchical PCA
  • Separate high-level parametersfor extrapolation
  • Efficient motion generation
  • Analysis in smaller dimensions

Data
PCA
23
3. Motion Modeling
  • Hierarchical PCA

All Data
Main PCA
24
3. Motion Modeling
25
3. Motion Modeling
  • Hierarchical PCA

All Data
Main PCA

subject1
subject2
26
3. Motion Modeling
  • Hierarchical PCA

All Data
Main PCA

subject1
subject2
Sub-PCA level 1
27
3. Motion Modeling
28
3. Motion Modeling
  • Hierarchical PCA

All Data
Main PCA

subject1
subject2
Sub-PCA level 1

walk
run
29
3. Motion Modeling
  • Hierarchical PCA

All Data
Main PCA

subject1
subject2
Sub-PCA level 1

walk
run
Sub-PCA level 2
30
3. Motion Modeling
31
3. Motion Modeling
32
3. Motion Modeling
  • Hierarchical PCA

All Data
Main PCA

subject1
subject2
Sub-PCA level 1

walk
run
Sub-PCA level 2

speed
33
3. Motion Modeling
34
3. Motion Modeling
35
3. Motion Modeling
  • Hierarchical PCA

All Data
Main PCA

subject1
subject2
Sub-PCA level 1

walk
run
Sub-PCA level 2

speed
speed
36
3. Motion Modeling
  • Hierarchical PCA

All Data
Main PCA

subject1
subject2
Sub-PCA level 1

walk
run
Sub-PCA level 2
Speed

speed
speed
37
3. Motion Modeling
  • Hierarchical PCA

All Data
Main PCA

subject1
subject2
Sub-PCA level 1
Locomotionweight

walk
run
Sub-PCA level 2
Speed

speed
speed
38
3. Motion Modeling
  • Hierarchical PCA

All Data
Main PCA
Personificationweight

subject1
subject2
Sub-PCA level 1
Locomotionweight

walk
run
Sub-PCA level 2
Speed

speed
speed
39
3. Motion Modeling
  • Un-normalization
  • Space leg length

Data
PCA
Generation
40
3. Motion Modeling
  • Un-normalization
  • Space leg length
  • Time original duration

Data
PCA
Generation
41
3. Motion Modeling
  • Un-normalization
  • Space leg length
  • Time original duration
  • Frequency function

Data
PCA
Generation
42
3. Motion Modeling
  • Un-normalization
  • Space leg length
  • Time original duration
  • Frequency function
  • Phase

Data
PCA
Generation
43
3. Motion Modeling
RHS
RHS
event
phase
44
3. Motion Modeling
RHS
RHS
event
phase
45
3. Motion Modeling
  • Un-normalization
  • Space leg length
  • Time original duration
  • Frequency function
  • Phase

Data
PCA
Generation
46
3. Motion Modeling
47
3. Motion Modeling
  • Results
  • Real-time
  • Entire motion

48
3. Motion Modeling
  • Results
  • Real-time
  • Entire motion
  • Limitations
  • Personification parameter
  • Class of movements

49
Contents
  • Introduction
  • Related Work
  • Motion Modeling
  • Motion Correction
  • Adaptive Motion Control
  • Conclusion

50
4. Motion Correction
  • Approach

51
4. Motion Correction
  • Problem
  • Foot sliding (or skating)
  • Treadmill
  • Interpolation

52
4. Motion Correction
  • Problem
  • Foot sliding (or skating)
  • Treadmill
  • Interpolation
  • Foot position

53
4. Motion Correction
  • Problem
  • Foot sliding (or skating)
  • Treadmill
  • Interpolation
  • Foot position
  • Angular speed parameter

54
4. Motion Correction
  • Correct footplant

Right foot
RHS
RTS
RHO
RTO
55
4. Motion Correction
  • Footplant detection
  • Threshold Men04, Lee02
  • Foot position and speed
  • Dependent on motion parameters

56
4. Motion Correction
  • Footplant detection
  • Threshold Men04, Lee02
  • Foot position and speed
  • Dependent on motion parameters
  • Our approach only one threshold (position)
  • Rough approximation begin/end frame

57
4. Motion Correction
58
4. Motion Correction
  • Footplant detection
  • Threshold Men04, Lee02
  • Foot position and speed
  • Dependent on motion parameters
  • Our approach only one threshold (position)
  • Rough approximation begin/end frame
  • Adaptive position threshold

59
4. Motion Correction
60
4. Motion Correction
61
4. Motion Correction
62
4. Motion Correction
63
4. Motion Correction
64
4. Motion Correction
  • Footplant detection
  • Threshold Men04, Lee02
  • Foot position and speed
  • Dependent on motion parameters
  • Our approach only one threshold (position)
  • Rough approximation begin/end frame
  • Adaptive position threshold
  • On-line Anticipation

65
4. Motion Correction
66
4. Motion Correction
  • Footplant enforcement
  • Analytic IK Kovar02, Park02

67
4. Motion Correction
  • Footplant enforcement
  • Analytic IK Kovar02, Park02
  • Numerical IK with priorities Baerlocher04,
    Callennec04
  • 1 Ankle
  • 2 Toe

68
4. Motion Correction
  • Footplant enforcement
  • Analytic IK Kovar02, Park02
  • Numerical IK with priorities Baerlocher04,
    Callennec04
  • 1 Ankle
  • 2 Toe
  • Anticipation forease-in phase

69
4. Motion Correction
  • Footplant enforcement
  • Yellowcurrent posture
  • Greenanticipated posture with IK

pos
E0(t)
E0(t1)
time
t0
t1
70
4. Motion Correction
  • Footplant enforcement
  • Yellowcurrent posture
  • Greenanticipated posture with IK

pos
E0(t)
E0(t1)
Ec
time
t0
t1
71
4. Motion Correction
  • Footplant enforcement
  • Yellowcurrent posture
  • Greenanticipated posture with IK

pos
E0(t)
E0(t1)
E (t)
Ec
time
t0
t1
72
4. Motion Correction
73
4. Motion Correction
  • Results
  • Smooth correction
  • Straight curved motion

74
4. Motion Correction
  • Results
  • Smooth correction
  • Straight curved motion
  • Limitations
  • IK per frame
  • Only for slight corrections

75
Contents
  • Introduction
  • Related Work
  • Motion Modeling
  • Motion Correction
  • Adaptive Motion Control
  • Conclusion

76
5. Adaptive Motion Control
  • Approach

77
5. Adaptive Motion Control
  • Automatic on-line motion transition
  • Locomotion / Jump

Parameterized jump
Parameterized locomotion
Walk / Run
Jump
78
5. Adaptive Motion Control
  • Automatic on-line motion transition
  • Locomotion / Jump
  • Time and duration identical footplant

RTO
RHS
Walk / Run
Jump
LTO
LHS
79
5. Adaptive Motion Control
jump
loco
loco
80
5. Adaptive Motion Control
  • Automatic on-line motion transition
  • Locomotion / Jump
  • Time and duration identical footplant
  • Dynamic coherence type, run-up speed

81
5. Adaptive Motion Control
  • Motion capture observation (gt200 jumps)

82
5. Adaptive Motion Control
  • Motion capture observation (gt200 jumps)

83
5. Adaptive Motion Control
  • Automatic on-line motion transition
  • Locomotion / Jump
  • Time and duration identical footplant
  • Dynamic coherence type, run-up speed

84
5. Adaptive Motion Control
  • Speed variation
  • Linear variable distance during adaptation

adaptation
85
5. Adaptive Motion Control
  • Speed variation
  • Linear variable distance during adaptation
  • Other model ensure in on-line correct take-off
    foot position

86
5. Adaptive Motion Control
  • Approach
  • Quadratic speed profile
  • Duration

87
5. Adaptive Motion Control
  • Approach
  • Quadratic speed profile
  • Duration
  • Parameters
  • Current speed
  • Final speed
  • Distance
  • Current phase
  • Final phase

88
5. Adaptive Motion Control
  • Behavior

Jump over ?
89
5. Adaptive Motion Control
  • Behavior

Jump over ?
Speed profile
Loco Jump
90
5. Adaptive Motion Control
  • Behavior

91
5. Adaptive Motion Control
  • Behavior

Jump over ?
Speed profile
Way points
Loco Jump
Loco
92
5. Adaptive Motion Control
  • Behavior

93
5. Adaptive Motion Control
94
5. Adaptive Motion Control
95
5. Adaptive Motion Control
  • Results
  • Transition locomotion jump
  • Real-time
  • Flexibility
  • Limitations
  • Obstacle as box in front
  • Quadratic model

96
Contents
  • Introduction
  • Related Work
  • Motion Modeling
  • Motion Correction
  • Adaptive Motion Control
  • Conclusion

97
6. Conclusion
  • Goals
  • On-line and versatile animation model
  • Environment

98
6. Conclusion
  • Goals
  • On-line and versatile animation model
  • Environment
  • Choices
  • Motion capture data
  • PCA
  • IK for footplants

99
6. Conclusion
  • Summary of contributions
  • Motion parameterization
  • Footplant detection and enforcement
  • Coherent motion transition
  • Dynamic obstacle handling
  • Integration and applications

100
6. Conclusion
  • Perspectives
  • Applications
  • Video game (autonomous character)
  • Urban traffic simulation (crowd)
  • Orthopaedics

101
6. Conclusion
  • Perspectives
  • Applications
  • Video game (autonomous character)
  • Urban traffic simulation (crowd)
  • Orthopaedics
  • Extensions
  • Locomotion personification
  • Physical validation
  • Jump variety

102
  • Questions ?

103
  • IK formulation
  • f non-linear
  • Second priorityprojected null-space

104
  • Rodrigues Formula
  • Skew-symmetric matrix B

105
  • Quaternion and axis-angle

106
  • Speed profile

107
  • Linear interpolation of quaternions

108
RTO p 1
RHS p 0
109
f
110
Approximation onsynthesized data
Approximation onsynthesized data
Original Data
Write a Comment
User Comments (0)
About PowerShow.com