Implication of Martian Deuterium for Water in the planets recent past - PowerPoint PPT Presentation

1 / 18
About This Presentation
Title:

Implication of Martian Deuterium for Water in the planets recent past

Description:

Implication of Martian Deuterium for Water in the planet's ... Jeans' escape R = 0.05 gaussian tail. Jeans' averaged over solar variations. R = 0.1 0.2 ... – PowerPoint PPT presentation

Number of Views:41
Avg rating:3.0/5.0
Slides: 19
Provided by: chandrawic
Category:

less

Transcript and Presenter's Notes

Title: Implication of Martian Deuterium for Water in the planets recent past


1
Implication of Martian Deuterium for Water in the
planets recent past
Max K Wallis Cardiff Centre for Astrobiology
EGU07 Vienna April 2007
2
Mars geophysics
  • Episodic flooding
  • water gt carbonates
  • km-deep polar cap
  • seasonal, obliquity cycle
  • Meteorite impacts
  • small scale gardening
  • Asteroid / comet impacts
  • rare large craters
  • Dust blow
  • Volcanism lava flows
  • few 100 Myr old

3
Meteorites from Mars
  • Antarctic collection - Allan Hills
  • Nakhla

Deuterium enriched ALH84001 E 1.6
(3.9 Gyr) Shergottites E 2.3 (few 100 Myr)
Carbonates, little H2O gt episodic flooding
4
1200 km wide 1-3 km thick up to 1 km
ravines volume half of Greenland cap -
1.2 M km3
5
Frozen Elysium Sea Mars Express Feb.05
5 Myr old few cm dust cover on ice ?
6
Can Deuterium tell us about early Mars water ?
  • Atmospheric H2O very little 2 Gt 10 µm
  • the H is lost to space in 2 x 104 yr
  • 2Gt gt 1 km comet - one per few Myr

Elysium flood gt 5000 Gt 5 Myr
ago Volcanos 1000 Gt gt 10 Myr North Polar
cap 1015 Gt 0.9 m H20 Crustal water
1018 Gt 1 km H20
Albedo changes Mars global warming decades
? Polar Cap changes with orbital obliquity
22o -gt 60o - last high 30o 0.4 Myr
ago Sun changes active 3 Gyr atmosphere
loss v. high
7
current D enriched E 5.2 x SMOW
  • Fractionation in atmosphere
  • Exchange with reservoir eg. ground-ice
  • - uncertain reservoir E 2 as meteorites
  • Impact excavation of ground-ice 104 yr
  • - comet or asteroid cratering - mass x 104
  • Remnant of large flood Elysium 5 Myr

8
Yung et al. Icarus 1988 Photo-driven D
reactions In Mars atmosphere
Effusion speeds as V (T)
9
fractionation in escape R
  • Yung et al. ? R 0.32
  • Jeans escape R 0.05 gaussian tail
  • Jeans averaged over solar variations
  • R 0.1 0.2

Non-thermal escape exosphere photochem ? D gt
0.25eV (5 km/s) Solar wind sweeping
scavenging via charge exchange ionosphere
bubbles Energetic O ? O ? knock-on D, HD
sputtering
all have R ? 1 gravity collisions ? R ? 0.8
- 0.9
10
Main photochemical escape channels
thermal escape 8300 /cm2s
2300-7400 6000 5-10 000
  • Photodissociation
  • h? HD ? H D 1.5eV, 0.75eV
  • CO2 HD ? CO2H D 1.1 eV
  • CO2 HD ? CO2D H
  • CO2D e ? CO2 D 8 eV
  • O HD ? OH D 0.57 eV
  • O HD ? OD H
  • OD CO2 ? CO2D O ? D of 8 eV

Energetic O knock-on D and HD 500
11
Modolo et al. (2004) Picked up coronal O / cm3
  • From Solar Wind
  • energetic ions/neutrals
  • O accelerated
  • Charge exchange
  • ? fast O keV
  • sputter
  • from exobase level
  • supra-thermal popn
  • plus several escapees

12
Numbers depend on exospheric theory
hard-sphere collisions integrals through
exobase Planet Space Sci 26, 1978 ?
dµ ? dz e-(z/Hi z/He) exp-1/µ ez/H
  • What is surface ice enrichment Esurf ?
  • If simple steady state loss
  • Yungs R 0.32 plus R 0.78 vapour-ice
  • ? Esurf 5.2 x 0.78 x 0.32 1.3
  • for R 0.7 ? Esurf 5.2 x 0.78 x 0.7 2.8

Could this happen post 0.4 Myr high obliquity?
at loss rate of 1 Gt / 104yr size of mobile
ice reservoir Vo E 1/(1-R) 160 Gt
13
number of craters / km2
saturation line
Scaled from lunar crater counts Hartmann
Neukum 2001
age 10 ky
1 My
1 Gy
4 Gy
Diameter km
m
14
Cratering function ? gt gardening by small
impacters
  • Formation of craters larger than size ? km
  • ? 5 x 10-13 ?-3.8 / km2.yr
  • from ? 1 m
    to 1 km
  • Excavated volume 0.05 p? ? ?3 d ?/d ? d ?
  • 1.5 x 10-8 m3 / m2.yr
  • gardening at 1.5 cm / Myr
  • gt cover by 1 metre craters in 100 Myr

15
Apply to Mars
  • Atmosphere slowing of small impacters
    1 of Earths 10g/cm2 gt limit ?
    1 m
  • Lower impact speeds on Mars
  • not 15-25km/s but 10 -20 km/s
  • Impacts into ice 20 x more excavated mass
  • 2.5 x larger craters

16
Large Craters can be significant
  • Craters ?gt 1-2 km fit to a shallower crater
    function
  • ? 3 x 10-14 ?-1.8 / km2.yr for ?
    gt 1 km
  • The rate of crater formation gt ?1 over the whole
    martian surface is
  • 1.4 x 108 km2 ? d?/d? d? 1.4 x 108 km2
    ?( ?1)
  • 50-70 / Myr for 1 km craters
  • and 0.7 / Myr for 10 km craters

Cratering in ice/permafrost excavates 20 x
more covers 10 of Mars gt60o latitude
17
number of craters / km2
Last big crater in icy terrain in 105 yr ?
0.9km 4.105 yr ? 1.4km Volume excavated
2.3km3 8.8km3 volumes from small
craters 6-21km3 22-85km3
saturation line
105 yr
4 Gy
?
10 My
1 Gy
Diameter km
m
ice of 1 km3 0.9 Gt H2O lost 10 Gt in
105 yr
18
conclude D / H2O over the last Myr
  • Cratering of icy terrain replaces several times
    the loss of H and D from atmosphere
  • Small cratering supplies more than occasional
    large craters unless ice is deep gt 100m
  • Large crater inputs may not be negligible
  • ? stochastic changes
  • We understand why E is low
  • . much water-ice in the surface
  • . but not why E is as high as 5.2
  • Suggests mobile ice has E ? 3
  • . more than meteorites E ? 2
Write a Comment
User Comments (0)
About PowerShow.com