An Introduction to Atomic Force Microscopy - PowerPoint PPT Presentation

About This Presentation
Title:

An Introduction to Atomic Force Microscopy

Description:

AFM applied to nanoelectronics: the Grutter research group Author: Peter Grutter Last modified by: Grutter Created Date: 4/6/2002 4:01:48 PM Document presentation format: – PowerPoint PPT presentation

Number of Views:395
Avg rating:3.0/5.0
Slides: 52
Provided by: PeterG101
Category:

less

Transcript and Presenter's Notes

Title: An Introduction to Atomic Force Microscopy


1
An Introduction to Atomic Force Microscopy
  • Peter Grutter
  • Physics Department
  • www.physics.mcgill.ca/peter/

2
Outline
  • 1. Introduction
  • 2. Magnitude of forces
  • How to measure forces
  • 3. Components of an AFM
  • Cantilever
  • Deflection sensing
  • Feedback
  • Piezo scanners
  • Image processing artifacts
  • Approach mechanisms
  • 4. What forces?
  • Repulsive forces
  • van der Waals forces
  • Electrostatic forces
  • Magnetic forces
  • Capillary forces
  • 5. Operation modes
  • Normal and lateral forces
  • Force spectroscopy
  • Modulation techniques
  • AC techniques
  • Dissipation
  • 6. Ultimate limits
  • 7. Summary

3

4
Scanning Tunneling Microscope (STM)
  • Based on quantum mechanical tunneling current
  • Works for electrically conductive samples
  • Imaging, spectroscopy and manipulation possible

D. Eigler, IBM Almaden
5
Forces between atoms
  • Bonding energies
  • Quantum mechanical (covalent, metallic bonds)
    1-3 nN
  • Coulomb (dipole, ionic) 0.1-5 nN
  • Polarization (induced dipoles) 0.02-0.1 nN
  • J. Israelachvili Intermolecular and Surface
    Forces Academic Press
  • Back of the envelope
  • Atomic energy scale
  • Ebond 1-4 eV 2-6 10-19 J
  • Typical bonding length
  • a 0.2 nm
  • Typical forces
  • F E/a 1-3 nN

6
(No Transcript)
7
Measuring forces
  • Force
  • F k Dz
  • Force gradient F
  • F 2k Df/f
  • approximation good if
  • d2V / dz2 constant for D z
  • otherwise Giessibl, APL 78, 123 (2001)

8
Atomic Force Microscope
deflection sensor
approach
force sensor tip
feedback
sample
vibration damping
scanner
Data acquisition
9
The force sensor
  • Microfabrication of inte-grated cantilevers
    with tips

10
Spring constants k and resonant frequency f of
cantilevers
  • Spring constant k
  • typical values 0.01 - 100 N/m
  • Youngs modulus EY 1012 N/m2
  • Resonant frequency fo
  • typical values 7 - 500 kHz

11
Calibration of cantilever spring constant k
  • Methods
  • Thermal
  • Hutter and Bechoefer, RSI 64, 1068 (1993)
  • Sader method (measure geometry)
  • Sader RSI 66, 9 (1995)
  • Reference spring method
  • M. Tortonese, Park Scientific
  • Added mass
  • Walters, RSI 67, 3583 (1996)
  • Excellent discussion and references
  • www.asylumresearch.com/springconstant.asp

12
Atomic Force Microscope
deflection sensor
approach
force sensor
tip
feedback
sample
vibration damping
scanner
Data acquisition
13
Deflection sensors
C) Piezoresisitive
14
Atomic Force Microscope
deflection sensor
approach
force sensor
tip
feedback
sample
vibration damping
scanner
Data acquisition
15
Feedback modes
F constant
16
Atomic Force Microscope
deflection sensor
approach
force sensor
tip
feedback
sample scanner
vibration damping
Data acquisition
17
Piezoelectric scanners
  • Properties

3. Aging (regular recalibration)
18
Atomic Force Microscope
deflection sensor
approach
force sensor
tip
feedback
sample
vibration damping
scanner
Data acquisition
19
Creating an image from the feedback signal
line scan
20
Image processing
Beware of introducing image processing artifacts
! Understand and know what you are doing
21
Imaging Artifacts
22
Atomic Force Microscope
deflection sensor
approach vibration damping
force sensor
tip
feedback
sample
scanner
Data acquisition
23
Tip-sample approach
  • Dynamic range from mm to nm
  • Coarse fine approach!
  • Many possibilities
  • 1. Piezo walkers
  • 2. Lever arms

24
And finally thermal drift!
  • Touching the microscope (e.g. sample,
    cantilever) will change its temperature T.
    Shining light on it too! Cantilever has a mass of
    1 ng, and thus a VERY small heat capacity.

So what!?!
DL/L const DT const 10-5
25
The first AFM
  • G. Binnig, Ch. Gerber and C.F. Quate, Phys. Rev.
    Lett. 56, 930 (1986)

26
Repulsive Contact Forces
  • Diblock co-polymers used as self assembled etch
    mask

Meli, Badia, Grutter, Lennox, Nano Letters 2,
131 (2002)
27
Van derWaals forces
  • FvdW AR/6z2
  • AHamaker const.
  • RTip radius
  • zTip - sample separation
  • A depends on type of materials
    (polarizability). For most materials and vacuum
    A1eV
  • Krupp, Advances Colloidal Interface Sci. 1,
    113 (1967)
  • R100nm typical effective radius
  • -gt FvdW 10 nN at z0.5 nm

28
Electrostatic forces
  • Felectrostatic p e0 RU2/ z
  • UPotential difference
  • RTip radius
  • zTip - sample separation
  • R100nm typical effective radius
  • U1V
  • -gt Felectrostatic 5 nN at z0.5 nm

Tans Dekker, Nature404, 834 (2000)
29
Chemical forces
Si(111) 7x7
  • FMorse Ebond/z (2e-k(z-s) - e-2k(z-s))
  • Ebond Bond energy
  • k decay length radius
  • sequilibrium distance
  • Other popular choice
  • 12-6 Lennard Jones potential

Lantz et al, Science 291, 2580 (2001)
30
Magnetic Forces
  • Fmagntic mtip ?Hsample
  • Comprehensive review
  • Grutter, Mamin and Rugar, in
  • Scanning Tunneling Microscopy II
  • Springer, 1991

Melting of flux lattice in Nb
Images stray field and thus very useful in the
magnetic recording industry, but also in science.
Roseman Grutter, unpublished
31
Magnetic Force Microscopy
Tracks on
hard disk floppy disk image
size 10 and 30 micrometers. M. Roseman (McGill)
32
Capillary forces (water layer)
  • There is always a water layer on a surface in
    air!
  • Fcapillary 4p R g cos?
  • g surface tension, 10-50 mJ/m2
  • ? contact angle

33
Different operation modes
  • Imaging (DC)
  • Lateral or frictional forces
  • Force spectroscopy (F(z), snap-in, interaction
    potentials,
  • molecular pulling and energy landscapes)
  • Modulation techniques (elasticity, electrical
    potentials, )
  • AC techniques (amplitude, phase, FM detection,
    tapping)
  • Dissipation

34
DC Imaging, lateral forces
35
Force Spectroscopy
Snap in condition k lt F
For meaningful quantitative analysis, k gt
stiffness of molecule
force
distance
a
water
a
36
W(111) tip on Au(111)
  • Cross et al.
  • PRL 80, 4685 (1998)
  • Schirmeisen et al,
  • NJP 2, 29.1 (2000)

37
Site specific chemical interaction potential
Si(111) 7x7
Lantz, Hug, Hoffmann, van Schendel, Kappenberg,
Martin, Baratoff, and Guentherodt , Science 291,
2580 (2001)
38
AFM Elasticity Maps of Smooth Muscle Cells
elasticity contrast
topography
HANKS buffer no serotonin
B. Smith, N. Durisic, B. Tolesko, P. Grutter,
unpublished
39
DNA Unwinding
Anselmetti, Smith et. al. Single Mol. 1 (2000) 1,
53-58
Nature - DNA replication, polymerization
40
DNA Structural TransitionsAFM Force
Spectroscopy in TRIS Buffer
Duplex poly(dA-dT)
Duplex poly(dG-dC)
Simulation data from Lavery and Lebrun 1997.
B
800 400 0
800 400 0
ssDNA Elasticity Model
Melting Transition 300 pN
Force pN
S
B-S Transition 70 pN
B-S Transition 40 pN
50 75 100 125
300 450 600 750
Molecular Extension nm
Molecular Extension nm
41
Typical forces and length scales
Gaub Research Group, Munchen
42
Loading Rate Dependent Unbinding
Good review Evans, E. Annu. Rev. Biophys.
Biomol. Struct. 2001. 30105-28.
43
F(z) as a function of pulling speed
Allows the determination of energy barriers and
thus is a direct measure of the energy
landscape in conformational space.
Clausen-Schaumann et al., Current Opinions in
Chem. Biol. 4, 524 (2000)
Merkel et al., Nature 397, (1999)
Evans, Annu. Rev. Biophys. Biomol. Struct., 30,
105 (2001)
44
Modulation techniques
  • Concept modulate at frequency fmod and use e.g.
    lock-in detection.
  • Elasticity
  • Viscoelasticity
  • Kelvin probe
  • Electrical potential
  • Piezoresponse
  • .

Carbon fibers in epoxy matrix, 40 micrometer scan
Digital Instruments
45
AC techniques
  • Change in resonance curve can be detected by
  • Lock-in (A or ?)
  • FM detection (?f and Adrive)
  • Albrecht, Grutter, Horne and Rugar
  • J. Appl. Phys. 69, 668 (1991)
  • () used in Tapping mode

?f
?A
f1 f2 f3
46
Some words on Tapping
  • Amount of energy dissipated
  • into sample and tip strongly depends on
    operation conditions.
  • Challenging to determine magnitude or sign
    of force.
  • NOT necessarily less power dissipation than
    repulsive contact AFM.

47
Dissipation
  • Dissipation due to non-conservative tip-sample
    interactions such as
  • Inelastic tip-sample interactions
  • Adhesion hysterisis
  • Joule losses
  • Magnetic dissipation
  • The cantilever is a damped, driven, harmonic
    oscillator

48
Ultimate limits of force sensitivity
  • 1. Brownian motion of cantilever!
  • thermal limits
  • Martin, Williams, Wickramasinghe JAP 61, 4723
    (1987)
  • Albrecht, Grutter, Horne, and Rugar JAP 69, 668
    (1991)
  • D. Sarid Scanning Force Microscopy

T4.5K
Arms amplitude
A2 kBT/k
Roseman Grutter, RSI 71, 3782 (2000)
2. Other limits - sensor shot noise - sensor
back action - Heisenberg D.P.E. Smith RSI 66,
3191 (1995)
Bottom line Under ambient conditions energy
resolution 10-24J ltlt 10-21J/molecule
49
Outlook
  • AFM provides imaging, spectroscopy and
    manipulation capabilities in almost any
    environment
  • ambient, UHV, liquid
  • at temperatures ranging from mK - 900K
  • with atomic resolution and sensitivity
  • (at least in some cases)

50
  • AFM provides imaging, spectroscopy and
    manipulation capabilities in almost any
    environment
  • ambient, UHV, liquid
  • at temperatures ranging from mK - 900K
  • with atomic resolution and sensitivity
  • (at least in some cases)

51
  • AFM provides imaging, spectroscopy and
    manipulation capabilities in almost any
    environment
  • ambient, UHV, liquid
  • at temperatures ranging from mK - 900K
  • with atomic resolution and sensitivity
  • (at least in some cases)
Write a Comment
User Comments (0)
About PowerShow.com