Above-threshold-ionization (ATI) of atoms in an intense, few-cycle laser pulse - PowerPoint PPT Presentation

About This Presentation
Title:

Above-threshold-ionization (ATI) of atoms in an intense, few-cycle laser pulse

Description:

Above-threshold-ionization (ATI) of atoms. in an intense, few-cycle laser pulse. Marlene Wickenhauser. Collaborators: Xiao Min Tong and Chii Dong Lin. laser pulse ... – PowerPoint PPT presentation

Number of Views:89
Avg rating:3.0/5.0
Slides: 19
Provided by: MWI2
Learn more at: http://jrm.phys.ksu.edu
Category:

less

Transcript and Presenter's Notes

Title: Above-threshold-ionization (ATI) of atoms in an intense, few-cycle laser pulse


1
Above-threshold-ionization (ATI) of atoms in an
intense, few-cycle laser pulse
Marlene Wickenhauser Collaborators Xiao Min Tong
and Chii Dong Lin
2
Schematic picture
ionization of electron
atom
Ar
laser pulse
Calculation
10 fs 400 - 800 nm
  • Electron spectra
  • 2D momentum distribution

I 2 x 1014 W/cm2
3
Motivation
Recent experiments MPI
Heidelberg, KSU
e-
5 x 1014 W/cm2
800 nm
Low energy spectra -lots of structure
-even in tunneling regime
4
Introduction
Multiphoton ionization
Tunneling ionization
Above-threshold-ionization (ATI)
Keldysh parameter
5
Typical ATI spectrum
Absorbed Photons
P. H. Bucksbaum PRA 37 3615 (1988)
12 14 16 18 20
22
h?
h?
ATI peaks
0 0.1 0.2 0.3
Electrons/eV
ponderomotive energy
Ionization potential
0 5 10 15 20
25 30
Energy (eV)
6
Outline
  1. Theory
  2. Energy Spectra
  3. 2D electron-momentum distribution
  4. Projection on parallel momentum

7
Theory
1) Numerical solution of TDSE
-Single active electron approximation
-grid -Split operator method for time propagation
2) Strong field approximation (SFA)
Neglect -Coulomb field on ionized electrons
-Depletion of ground state
-Other bound states
Dipole transition moment
Laser-dressed energy
8
Energy spectrum
SFA
TDSE
Energy (eV)
9
Electron spectra from a short pulse
No well defined frequency intensity
time
0 0.5 1
P (arb. unit)
0 2 4
6 8
Energy (eV)
10
Redefined Volkov phase
Laser-dressed energy
energy shift averageUp
electron-field coupling
11
2D momentum Distribution - SFA
P (a.u.)
0 0.3 0.6
-0.8 -0.4 0 0.4
0.8
P (a.u.)
  • ATI peaks
  • Subpeaks
  • Parity
  • Angular momentum

12
Comparison with TDSE
0 0.3 0.6
SFA
0 0.3 0.6
TDSE
-0.8 0.4 0 0.4 0.8
P (a.u.)
13
Intensity dependence Ar 400 nm
Ip Up
threshold
Channel closing
6 h?
Ar Ip 15.76 eV
1.7 x 1014 W/cm2 Up 2.55 eV
Ip
6 h?
intensity
1.7 x 1014 W/cm2
3.2 x 1014 W/cm2
0 0.3 0.6
-0.8 0.4 0 0.4 0.8
3.9 x 1014 W/cm2
2.4 x 1014 W/cm2
0 0.3 0.6
P (a.u.)
-0.8 -0.4 0 0.4 0.8
-0.8 -0.4 0 0.4 0.8
14
Momentum projection
e-
Ne 25 fs, 800 nm, I 4 x 1014 W/cm2
Rudenko et al. J. Phys. B 37 L407 (2004)
atom
0.6
15
Explanation for dip in literature
  • Rescattering
    J.
    Chen et al, PRA 63 11404(R) (2000)
  • Coulomb potential
    K. Dimitriou et al, PRA 70 061401(R)
    (2004)
  • Position of ATI peaks (in tunneling regime)
    F. H. M. Faisal et al, J.
    Phys. B 38 L223 (2005)
  • Freeman Resonance
    A. Rudenko et al, J. Phys. B 37 L407
    (2004)

16
Argon 400 nm 10 fs
Multiphoton
I 1.7 x 1014 W/cm2
I 3.9 x 1014 W/cm2
g 1.76
g 1.13
0 0.3 0.6
0 0.3 0.6
0 0.5 1
0 0.5 1
P (a.u.)
-1 -0.5 0 0.5 1
-1 -0.5 0 0.5 1
P (a.u.)
P (a.u.)
17
Argon 800 nm 10 fs
dip
peak
Tunneling
I 1.65 x 1014 W/cm2
I 1.8 x 1014 W/cm2
g 0.89
g 0.85
0 0.3 0.6
0 0.3 0.6
0 0.5 1
0 0.5 1
-1 -0.5 0 0.5 1
-1 -0.5 0 0.5 1
P (a.u.)
P (a.u.)
18
Conclusion
  • Subpeaks in ATI spectra from short pulses
  • Explained structures in 2D momentum distribution
  • Dip in parallel momentum
  • -Tunneling regime ATI peaks
  • -Multiphoton regime Parity of first ATI peak
  • -Coulomb effect not relevant
  • -Longer pulses Freeman resonances
Write a Comment
User Comments (0)
About PowerShow.com