Stiffness Method Chapter 2 - PowerPoint PPT Presentation

1 / 95
About This Presentation
Title:

Stiffness Method Chapter 2

Description:

For an element, a stiffness matrix. is a matrix such that. where relates local coordinates ... Circular Torsion k = GJ/L. One-dimensional heat conduction k = AKxx/L ... – PowerPoint PPT presentation

Number of Views:3574
Avg rating:5.0/5.0
Slides: 96
Provided by: www1Gan
Category:

less

Transcript and Presenter's Notes

Title: Stiffness Method Chapter 2


1
Stiffness MethodChapter 2
2
Definition
For an element, a stiffness matrix is a
matrix such that where relates local
coordinates nodal displacements to local
forces of a single element.
3
(No Transcript)
4
Spring Element
k
1
2
L
5
Definitions
k - spring constant
node
node
6
Examples of Stiffness
  • Uniaxial Bar k AE/L
  • Circular Torsion k GJ/L
  • One-dimensional heat conduction
    k AKxx/L
  • One-dimensional fluid flow (porous medium)
    k AKxx/L

7
Stiffness Relationship for a Spring
8
Steps in Process
  • Discretize and Select Element Type
  • Select a Displacement Function
  • Define Strain/Displacement and Stress/Strain
    Relationships
  • Derive Element Stiffness Matrix Eqs.
  • Assemble Equations and Introduce B.C.s
  • Solve for the Unknown Degrees of Freedom
  • Solve for Element Stresses and Strains
  • Interpret the Results

9
General Steps
  • Outlined on Previous Slide
  • Derive Stiffness Matrix
  • Illustrate Usage for Spring Assemblies

10
Step 1 - Select the Element Type
k
1
2
T
T
L
11
Step 2 - Select a Displacement Function
  • Assume a displacement function
  • Assume a linear function.
  • Number of coefficients number of d-o-f
  • Write in matrix form.

12
Express as function of and
13
Substituting back into
Yields
14
In matrix form
15
Shape Functions
N1 and N2 are called Shape Functions or
Interpolation Functions. They express the shape
of the assumed displacements. N1 1 N2 0 at
node 1 N1 0 N2 1 at node 2 N1 N2 1
16
N1
1
2
L
17
N2
1
2
L
18
N1
N2
1
2
L
19
Step 3 - Define Strain/Displacement and
Stress/Strain Relationships
T - tensile force ? - total elongation
20
Deformed Linear Spring Element
k
1
2
L
21
Step 4 - Derive the Element Stiffness Matrix and
Equations
22
(No Transcript)
23
Step 5 - Assemble the Element Equations to Obtain
the Global Equations and Introduce the B.C.
Note not simple addition!
24
Step 6 - Solve for Nodal Displacements
25
Step 7 - Solve for Element Forces
Once displacements at each node are known, then
substitute back into element stiffness
equations to obtain element nodal forces.
26
Two Spring Assembly
2
1
3
x
F3x
F2x
k1
k2
27
(No Transcript)
28
Elements 1 and 2 remain connected at node 3. This
is called the continuity or compatibility
requirement.
29
(No Transcript)
30
Nodal forces consistent with element force sign
convention.
2
3
1
F1x
F2x
F3x
31
(No Transcript)
32
(No Transcript)
33
Assembly of K - An Alternative Look.
2
1
3
x
F3x
F2x
k1
k2
34
Assembly of K
35
Expand Local k matrices to Global Size
36
Force Equilibrium
37
(No Transcript)
38
(No Transcript)
39
Compatibility
40
Boundary Conditions
  • Must Specify B.C.s to prohibit rigid body
    motion.
  • Two type of B.C.s
  • Homogeneous - displacements 0
  • Nonhomogeneous - displacements nonzero value

41
Partitioning
42
2
1
3
x
F3x
F2x
k1
k2
43
(No Transcript)
44
Homogeneous B.C.s
  • Delete row and column corresponding to B.C.
  • Solve for unknown displacements.
  • Compute unknown forces (reactions) from original
    (unmodified) stiffness matrix.

45
Nonhomogeneous B.C.s
46
Nonhomogeneous B.C.s
47
Nonhomogeneous B.C.s
  • Transfer terms associated with known d-o-f to
    RHS.
  • Solve for unknown displacements.
  • Compute unknown forces (reactions) from original
    (unmodified) stiffness matrix.

48
Properties of K Matrix
  • Symmetric - both element k and global K
  • K is singular. Must apply B.C. to prohibit
    rigid body motion.
  • Terms on main diagonal are positive Kii and kii

49
EXAMPLE Three Spring Assembly
k22000 lb/in
k11000 lb/in
k33000 lb/in
2
4
1
3
x
2
5000 lb
1
3
50
(No Transcript)
51
(No Transcript)
52
(No Transcript)
53
(No Transcript)
54
(No Transcript)
55
Element 1
1
909.1 lb
3
909.1 lb
56
Element 2
2
909.1 lb
4
3
909.1 lb
57
Element 3
3
4090.9 lb
2
4090.9 lb
58
EXAMPLENonhomogeneous B.C.
k
k
k
k
4
2
3
x
1
5
1
2
3
4
d
k200 kN/m
59
(No Transcript)
60
(No Transcript)
61
(No Transcript)
62
(No Transcript)
63
(No Transcript)
64
(No Transcript)
65
(No Transcript)
66
Element 1
1
1.0 kN
2
1.0 kN
67
Three Spring Assembly
k2
3
k1
2
2
P
x
k3
2
1
4
1
2
3
Rigid Bar
68
(No Transcript)
69
Free Body Diagram
1
2
1
70
Free Body Diagram
P
71
Free Body Diagram
2
3
3
2
2
4
4
3
72
Matrix Form of Stiffness Equations
73
Applying B.C.
74
(No Transcript)
75
Solving for Global Forces
76
Potential Energy Approach
  • Equilibrium at minimum potential energy.
  • Total potential energy defined as the sum of
    internal strain energy U and potential energy of
    external forces W.
  • ?p U W

77
System
F
x
k
78
Force-Deformation Curve
79
(No Transcript)
80
Stationary Value
81
Stationary Values
G
maximum
neutral
minimum
x
82
Stationary Value
83
Principle of Minimum Potential Energy
Equilibrium occurs when the qi define a state
such that ??p 0 for arbitrary admissible
variations in ?q1 from the equilibrium state
84
Admissible Variations in Displacements
An admissible variation is one in which the
displacement field satisfies the
boundary conditions and inter-element continuity.
85
Admissible Displacements
u
Admissible Displacement Function u ?u
?u
Actual Displacement Function
x
86
For Admissible Variations in Displacements
87
For Admissible Variations in Displacements
88
F
F
x
k
k 500 lb/in
x
89
(No Transcript)
90
(No Transcript)
91
(No Transcript)
92
EXAMPLE
k22000 lb/in
k11000 lb/in
k33000 lb/in
2
4
1
3
x
2
5000 lb
1
3
93
(No Transcript)
94
(No Transcript)
95
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com