Convex Hull Problem I - PowerPoint PPT Presentation

1 / 55
About This Presentation
Title:

Convex Hull Problem I

Description:

Simple Curve ... Example (Simple Curve) 3. Mathematical Preliminaries (cont.) Polygon ... For Simple Curve Construction. 4. Lower bound in Time Complexity (cont. ... – PowerPoint PPT presentation

Number of Views:441
Avg rating:3.0/5.0
Slides: 56
Provided by: tclabK
Category:
Tags: convex | curve | hull | problem

less

Transcript and Presenter's Notes

Title: Convex Hull Problem I


1
Convex Hull Problem I
  • S. Y. Shin
  • Computer Science Div.
  • KAIST

2
Contents
  • Problem Definition
  • Background
  • 2.1 Historical Review
  • 2.2 Examples
  • Mathematical Preliminaries
  • Lower bound in time complexity
  • Algorithm

3
1. Problem Definition
4
1. Problem Definition (cont.)
5
2. Background
2.1 Historical Review
  • R. Graham, IPL, (1972) O(n logn)
  • F. Preparata S. Hong, CACM, (1977)
  • Divide and Conquer
  • O(n logn)
  • Extanded to 3D.

6
2.1 Historical Review (cont.)
  • J. Sklansky, IEEE Trans. Comput, (1972)
  • M. Shamos, (1975)
  • O(n) algorithm for finding HULL(P), where P is a
    polygon.
  • A. Bykat, IPL, (1978) O(n)
  • Counter-examples to Sklanskys algorithm

7
2.1 Historical Review (cont.)
  • D. McCallum D. Avis, IPL, (1979) O(n)
  • using two stacks
  • very complicated
  • D. Lee, Intl J. of Computer and Information
    Science, (1983)
  • O(n)
  • Lobe(pocket)
  • Forward and Backward Tests
  • R. Graham F. Yao, J. of Algorithms, (1983) O(n)

8
2.1 Historical Review (cont.)
9
2.2 Example
Farthest distance problem
10
2.2 Example (cont.)
Observation (Farthest distance problem)
11
2.2 Example (cont.)
12
2.2 Example (cont.)
Intersection problem
  • Given two nonconvex polygons, A and B, find

13
2.2 Example (cont.)
Observation (Intersection problem)
14
2.2 Example (cont.)
Observation (Intersection problem)
Can you give a counter-example?
15
2.2 Example (cont.)
Counter example (Intersection problem)
An algorithm for finding the convex hull of a
polygon can be used as a preprocessing step to
possibly avoid an expensive step for computing
16
2.2 Example (cont.)
Optimization
17
2.2 Example (cont.)
Optimization
18
3. Mathematical Preliminaries
Defn Convex set
A set S is said to be convex if and only if the
line segment joining every pairs of points lies
entirely within S.
Notes How can you algebraically express an
interior point x of a convex polygon?
19
3. Mathematical Preliminaries (cont.)
algebraic expression
20
3. Mathematical Preliminaries (cont.)
Convex Hull
21
3. Mathematical Preliminaries (cont.)
Simple Curve
Defn Simple Curve (Jordan Curve)
A sequence of connected line is said to be a
simple curve if they satisfy the following
conditions (1) No pair of line segments
intersects except at their endpoints (2)
No more than two line segments intersects
at an endpoint.
22
3. Mathematical Preliminaries (cont.)
Example (Simple Curve)
23
3. Mathematical Preliminaries (cont.)
Polygon
24
3. Mathematical Preliminaries (cont.)
Polygon
25
3. Mathematical Preliminaries (cont.)
Presenting a Simple Polygon
26
3. Mathematical Preliminaries (cont.)
Characterization
minimality
The convex hull of S is the intersection of all
convex sets containing S.
convexity
27
3. Mathematical Preliminaries (cont.)
Characterization (cont.)
A sequence of vertices in the order appearing on
the boundary of HULL(S)
28
3. Mathematical Preliminaries (cont.)
Characterization (cont.)
29
3. Mathematical Preliminaries (cont.)
Characterizing the solution
30
3. Mathematical Preliminaries (cont.)
Check of Convexity
31
3. Mathematical Preliminaries (cont.)
Check of Convexity (cont.)
32
3. Mathematical Preliminaries (cont.)
Cross product
33
3. Mathematical Preliminaries (cont.)
Cross product (cont.)
34
4. Lower bound in Time Complexity
P1 Given a set S of n points in ,
construct its convex hull.
P2 Given a set S of n points in ,
identify all extreme points in S.
35
4. Lower bound in Time Complexity (cont.)
well,
In fact,
(next lecture)
36
4. Lower bound in Time Complexity (cont.)
Simple Polygon
37
4. Lower bound in Time Complexity (cont.)
Simple Polygon (cont.)
38
4. Lower bound in Time Complexity (cont.)
Simple Polygon (cont.)
well,
39
4. Lower bound in Time Complexity (cont.)
For Simple Curve Construction
40
4. Lower bound in Time Complexity (cont.)
For Simple Curve Construction (cont.)
41
4. Lower bound in Time Complexity (cont.)
For Simple Curve Construction (cont.)
42
5. Algorithms
43
5. Algorithms (cont.)
Unfortunately, such a device is not
available. Constructive but not computationally
feasible
44
5. Algorithms (cont.)
algorithm
45
5. Algorithms (cont.)
algorithm (cont.)
46
5. Algorithms (cont.)
Grahams algorithm
47
5. Algorithms (cont.)
Grahams algorithm (cont.)
48
5. Algorithms (cont.)
Grahams algorithm (cont.)
Algorithm
49
5. Algorithms (cont.)
Grahams algorithm (cont.)
VPTR
50
5. Algorithms (cont.)
Grahams algorithm (cont.)
Time complexity
  • Choose an internal point Sort and
    Construct a polygonFind convex hull

Optimal
51
5. Algorithms (cont.)
Any problems with Grahams algorithm?
Akl and Toussaint, efficient convex hull
algorithm for pattern recognition applications,
Proc. 4th Intl joint Conf. on Pattern
Recognition, Kyoto, Japan, 483-487, (1978).
52
5. Algorithms (cont.)
Akl and Toussaints Algorithm
53
5. Algorithms (cont.)
Akl and Toussaints Algorithm
Akl and Toussaints algorithm is specialization
of Grahams algorithm!!
54
5. Algorithms (cont.)
Jarvis March
  • Choose an extreme point How?
  • Choose next extreme point in sequences

55
5. Algorithms (cont.)
Jarvis March (cont.)
A point with the max. x coordinate is
extreme?Why ? Homework
of extreme pointsIf , then
Jarvis outperforms Graham.
Write a Comment
User Comments (0)
About PowerShow.com